Numerical Analysis
A dynamic optimization problem related to organic aerosols
Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 519-522.

A model that rigorously computes the gas–particle partitioning and liquid–liquid equilibrium for organic atmospheric aerosol particles is presented. The dynamics of the mass transfers between the particle and the gas phase are modeled with differential equations and are coupled with a constrained optimization problem for the thermodynamic equilibrium inside the particle. The nonlinear system composed by the first order optimality conditions coupled with the discretized differential equations is solved with an interior-point method and a Newton method. The resulting linear system is decoupled with sequential quadratic programming techniques. Numerical results and comparisons of time scales show the accuracy and efficiency of our algorithm.

Nous proposons un modèle pour le calcul de l'équilibre thermodynamique et la séparation de phases entre une particule et la phase gazeuse. La dynamique des transferts de masse entre particule et phase gazeuse est caractérisée par un système d'équations différentielles couplées avec un problème d'optimisation décrivant l'équilibre interne de la particule. Les conditions de premier ordre et une discrétisation implicite des équations différentielles forment un système d'équations non linéaires qui est traité avec une méthode de point intérieur couplée à une itération de Newton. Des résultats numériques et une comparaison des temps caractéristiques montrent la précision et l'efficacité de notre algorithme.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.03.002
Amundson, Neal R. 1; Caboussat, Alexandre 1; He, Jiwen 1; Landry, Chantal 2; Seinfeld, John H. 3

1 Department of Mathematics, University of Houston, Houston, TX 77204, USA
2 Institute of Analysis and Scientific Computing, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
3 Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
@article{CRMATH_2007__344_8_519_0,
     author = {Amundson, Neal R. and Caboussat, Alexandre and He, Jiwen and Landry, Chantal and Seinfeld, John H.},
     title = {A dynamic optimization problem related to organic aerosols},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {519--522},
     publisher = {Elsevier},
     volume = {344},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.03.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.03.002/}
}
TY  - JOUR
AU  - Amundson, Neal R.
AU  - Caboussat, Alexandre
AU  - He, Jiwen
AU  - Landry, Chantal
AU  - Seinfeld, John H.
TI  - A dynamic optimization problem related to organic aerosols
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 519
EP  - 522
VL  - 344
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.03.002/
DO  - 10.1016/j.crma.2007.03.002
LA  - en
ID  - CRMATH_2007__344_8_519_0
ER  - 
%0 Journal Article
%A Amundson, Neal R.
%A Caboussat, Alexandre
%A He, Jiwen
%A Landry, Chantal
%A Seinfeld, John H.
%T A dynamic optimization problem related to organic aerosols
%J Comptes Rendus. Mathématique
%D 2007
%P 519-522
%V 344
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.03.002/
%R 10.1016/j.crma.2007.03.002
%G en
%F CRMATH_2007__344_8_519_0
Amundson, Neal R.; Caboussat, Alexandre; He, Jiwen; Landry, Chantal; Seinfeld, John H. A dynamic optimization problem related to organic aerosols. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 519-522. doi : 10.1016/j.crma.2007.03.002. http://www.numdam.org/articles/10.1016/j.crma.2007.03.002/

[1] Amundson, N.R.; Caboussat, A.; He, J.W.; Seinfeld, J.H. An optimization problem related to the modeling of atmospheric organic aerosols, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 10, pp. 765-768

[2] Amundson, N.R.; Caboussat, A.; He, J.W.; Seinfeld, J.H. Primal-dual interior-point method for an optimization problem related to the modeling of atmospheric organic aerosols, J. Optim. Theory Appl., Volume 130 (2006) no. 3, pp. 375-407

[3] Fiacco, A.V.; McCormick, G.P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, 1968

[4] Hairer, E.; Wanner, G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Comput. Mathematics, vol. 14, Springer-Verlag, 1996

[5] Meng, Z.; Seinfeld, J.H. Times scales to achieve atmospheric gas–aerosol equilibrium for volatile species, Atmospheric Environment, Volume 30 (1996) no. 16, pp. 2889-2900

[6] Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998

Cited by Sources: