Partial Differential Equations
Convergence of a ferromagnetic film model
Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 77-82.

In this Note, we present a Γ-convergence type result for ferromagnetic films. We propose a model of films for which we could ensure the strong convergence of minimizers when the exchange parameter vanishes. In this model, the plate thickness is kept constant and the magnetization stays constant in the thickness of the film.

Dans cette Note, nous présentons un résultat de Γ-convergence pour les films de matériaux ferromagnétiques. Nous proposons un modèle pour lequel il est possible d'assurer une convergence forte des minimiseurs quand le paramètre d'échange tend vers zéro. Dans ce modèle, l'épaisseur du film est considérée comme constante et l'aimantation est contrainte à rester constante dans l'épaisseur du film.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.11.031
Alouges, François 1; Labbé, Stéphane 1

1 Université Paris-Sud 11, laboratoire de mathématiques, 91405 Orsay cedex, France
@article{CRMATH_2007__344_2_77_0,
     author = {Alouges, Fran\c{c}ois and Labb\'e, St\'ephane},
     title = {Convergence of a ferromagnetic film model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {77--82},
     publisher = {Elsevier},
     volume = {344},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.11.031/}
}
TY  - JOUR
AU  - Alouges, François
AU  - Labbé, Stéphane
TI  - Convergence of a ferromagnetic film model
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 77
EP  - 82
VL  - 344
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.11.031/
DO  - 10.1016/j.crma.2006.11.031
LA  - en
ID  - CRMATH_2007__344_2_77_0
ER  - 
%0 Journal Article
%A Alouges, François
%A Labbé, Stéphane
%T Convergence of a ferromagnetic film model
%J Comptes Rendus. Mathématique
%D 2007
%P 77-82
%V 344
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.11.031/
%R 10.1016/j.crma.2006.11.031
%G en
%F CRMATH_2007__344_2_77_0
Alouges, François; Labbé, Stéphane. Convergence of a ferromagnetic film model. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 77-82. doi : 10.1016/j.crma.2006.11.031. http://www.numdam.org/articles/10.1016/j.crma.2006.11.031/

[1] Alouges, F.; Labbé, S. z-invariant micromagnetic configurations in cylindrical domains http://www.math.u-psud.fr/~labbe/publications/publi19.pdf (Prépublication de l'Université Paris-Sud 11, Laboratoire de Mathématiques, available at)

[2] Alouges, F.; Rivière, T.; Serfaty, S. Néel and cross-tie wall energies for planar micromagnetic configurations, Control, Optimisation and Calculus of Variations, Volume 8 (2002), pp. 31-68

[3] Bagnérés-Viallix, A.; Baras, P.; Albertini, J.B. 2d and 3d calculations of micromagnetic wall structures using finite elements, IEEE Transactions on Magnetics, Volume 27 (1991) no. 5, pp. 3819-3822

[4] Braides, A. Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002

[5] Brown, W.F. Micromagnetics, Interscience Publishers, 1963

[6] Carbou, G. Thin layers in micromagnetism, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 9, pp. 1529-1546

[7] DeSimone, A. Energy minimisers for large ferromagnetic bodies, Arch. Rat. Mech., Volume 125 (1993), pp. 99-143

[8] DeSimone, A.; James, R.D. A theory of magnetostriction oriented towards applications, J. Appl. Phys., Volume 81 (1997) no. 8, pp. 5706-5708

[9] DeSimone, A.; Kohn, R.V.; Müller, S.; Otto, F. Magnetic microstructures—a paradigm of multiscale problems, ICIAM 99 (Edinburgh), Oxford University Press, Oxford, 2000, pp. 175-190

[10] Desimone, A.; Kohn, R.V.; Müller, S.; Otto, F. Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul., Volume 1 (2003) no. 1, pp. 57-104

[11] Desimone, A.; Kohn, R.V.; Müller, S.; Otto, F. A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1408-1460

[12] DeSimone, A.; Kohn, R.V.; Müller, S.; Otto, F.; Schäfer, R. Two-dimensional modelling of soft ferromagnetic films, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 457 (2001) no. 2016, pp. 2983-2991

[13] DeSimone, A.; Müller, S.; Kohn, R.V.; Otto, F. A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001) no. 4, pp. 833-844

[14] Gioia, G.; James, R.D. Micromagnetics of very thin films, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 453 (1997) no. 1956, pp. 213-223

[15] Halpern, L.; Labbé, S. Modélisation et simulation du comportement des matériaux ferromagnétiques, Matapli, Volume 66 (2001), pp. 70-86

[16] Hubert, A.; Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures, Springer-Verlag, 2000

[17] Jabin, P.-E.; Perthame, B. Compactness in Ginzburg–Landau energy by kinetic averaging, Comm. Pure Appl. Math., Volume 54 (2001) no. 9, pp. 1096-1109

[18] Rave, W.; Hubert, A. Micromagnetic calculation of the thickness dependence of surface and interior width of asymmetrical Bloch walls, J. Magnetism and Magnetic Materials, Volume 184 (1998), pp. 179-183

[19] Rivière, T.; Serfaty, S. Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations, Volume 28 (2003) no. 1–2, pp. 249-269

[20] Rivière, T.; Serfaty, S. Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math., Volume 53 (2001) no. 1, pp. 294-338

[21] Trélat, E. Global subanalytic solutions of Hamilton–Jacobi type equations, Ann. Inst. H. Poincaré Analyse Non Linéaire, Volume 23 (2006) no. 3, pp. 363-387

[22] van den Berg, H.A.M. Self-consistent domain theory in soft-ferromagnetic media. ii, basic domain structures in thin film objects, J. Appl. Phys., Volume 60 (1986), pp. 1104-1113

Cited by Sources: