Dynamical Systems
Liénard systems and potential-Hamiltonian decomposition III – applications
Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 253-258.

In the two previous Notes, we described the mathematical aspects of the potential-Hamiltonian (PH) decomposition, in particular for n-switches and Liénard systems. In the present Note, we give some examples of biological regulatory systems susceptible to be decomposed. We show that they can be modeled in terms of 2D-ODE belonging to n-switches and Liénard systems families. Although simplified, these models can be decomposed in a set of equations combining a potential and a Hamiltonian part. We discuss about the advantage of such a PH-decomposition for understanding the mechanisms involved in their regulatory abilities. We suggest a generalized algorithm to deal with differential systems having a second part of rational fraction type (frequently used in metabolic systems). Finally, we comment what can be interpreted as a precise signification in biological systems from the dynamical behaviors of both the potential and Hamiltonian parts.

Dans les deux Notes précédentes, nous avons décrit la décomposition potentielle-Hamiltonienne pour des systèmes de type n-switch ou Liénard. Leurs équations sont bien adaptées à la modélisation des systèmes dynamiques en biologie. Nous donnons ici des exemples de systèmes de régulation biologique pouvant être écrits sous la forme d'équations de Liénard et également sous forme de systèmes n-switch. Nous discutons ensuite de l'intérêt de connaître les contributions potentielles et Hamiltoniennes de ces systèmes dans la compréhension de leurs mécanismes. Pour terminer, nous suggérons un algorithme prenant en compte des systèmes différentiels à second membre de type fraction rationnelle rencontrés dans les modèles métaboliques, pour lesquels les parties potentielle et Hamiltonienne ont des significations biologiques précises. On explique comment utiliser en pratique cette décomposition au voisinage de leurs attracteurs.

Published online:
DOI: 10.1016/j.crma.2006.11.014
Glade, Nicolas 1; Forest, Loic 1; Demongeot, Jacques 1, 2

1 TIMC-IMAG UMR CNRS 5525, University J. Fourier Grenoble, Faculty of Medicine, 38700 La Tronche, France
2 Institut Universitaire de France
     author = {Glade, Nicolas and Forest, Loic and Demongeot, Jacques},
     title = {Li\'enard systems and {potential-Hamiltonian} decomposition {III} {\textendash} applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {253--258},
     publisher = {Elsevier},
     volume = {344},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.11.014/}
AU  - Glade, Nicolas
AU  - Forest, Loic
AU  - Demongeot, Jacques
TI  - Liénard systems and potential-Hamiltonian decomposition III – applications
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 253
EP  - 258
VL  - 344
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.11.014/
DO  - 10.1016/j.crma.2006.11.014
LA  - en
ID  - CRMATH_2007__344_4_253_0
ER  - 
%0 Journal Article
%A Glade, Nicolas
%A Forest, Loic
%A Demongeot, Jacques
%T Liénard systems and potential-Hamiltonian decomposition III – applications
%J Comptes Rendus. Mathématique
%D 2007
%P 253-258
%V 344
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.11.014/
%R 10.1016/j.crma.2006.11.014
%G en
%F CRMATH_2007__344_4_253_0
Glade, Nicolas; Forest, Loic; Demongeot, Jacques. Liénard systems and potential-Hamiltonian decomposition III – applications. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 253-258. doi : 10.1016/j.crma.2006.11.014. http://www.numdam.org/articles/10.1016/j.crma.2006.11.014/

[1] Baconnier, P.; Pachot, P.; Demongeot, J. An attempt to generalize the control coefficient concept, J. Biol. Systems, Volume 1 (1993), pp. 335-347

[2] Ben Lamine, S.; Calabrese, P.; Perrault, H.; Dinh, T.P.; Eberhard, A.; Benchetrit, G. Individual differences in respiratory sinus arrhythmia, Am. J. Physiol. Heart Circ. Physiol., Volume 286 (2004), pp. 2305-2312

[3] Cinquin, O.; Demongeot, J. Positive and negative feedback: striking a balance between necessary antagonists, J. Theor. Biol., Volume 216 (2002), pp. 229-241

[4] Cinquin, O.; Demongeot, J. Positive and negative feedback: mending the ways of sloppy systems, C. R. Biologies, Volume 325 (2002), pp. 1085-1095

[5] Cinquin, O.; Demongeot, J. High-dimensional switches and the modeling of cellular differentiation, J. Theor. Biol., Volume 233 (2005), pp. 391-411

[6] T. de Donder, Sur la théorie des invariants intégraux, Ph.D. thesis ULB, Brussels, 1899

[7] de Donder, T. Thermodynamic Theory of Affinity: A Book of Principles, Oxford Univ. Press, Oxford, 1936

[8] Demongeot, J. Existence de solutions périodiques pour une classe de systèmes différentiels gouvernant la cinétique de chaînes enzymatiques oscillantes, Lecture Notes in Biomath., vol. 41, 1981, pp. 40-62

[9] Demongeot, J.; Esteve, F.; Pachot, P. Comportement asymptotique des systèmes : applications en biologie, Rev. Int. Syst., Volume 2 (1988), pp. 417-442

[10] Demongeot, J.; Kaufmann, M.; Thomas, R. Positive feedback circuits and memory, C. R. Acad. Sci. Paris, Ser. III, Volume 323 (2000), pp. 69-79

[11] Demongeot, J.; Virone, G.; Duchêne, F.; Benchetrit, G.; Hervé, T.; Noury, N.; Rialle, V. Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people, C. R. Biologies, Volume 325 (2002), pp. 673-682

[12] J. Demongeot, N. Glade, L. Forest, Liénard systems and potential-Hamiltonian decomposition I – methodology, C. R. Acad. Sci. Paris Ser. I, | DOI

[13] J. Demongeot, N. Glade, L. Forest, Liénard systems and potential-Hamiltonian decomposition II – algorithm, C. R. Acad. Sci. Paris Ser. I, doi: | DOI

[14] Fitzhugh, R. Impulses and physiological states in theoretical models of nerve membranes, Biophys. J., Volume 1 (1961), pp. 445-466

[15] Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, New York, 1971

[16] Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., Volume 117 (1952), pp. 500-544

[17] Murray, J.D. Mathematical Biology, Springer, Berlin, 1989

[18] Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axons, Proc. IRL, Volume 50 (1960), pp. 2061-2070

[19] Pham Dinh, T.; Demongeot, J.; Baconnier, P.; Benchetrit, G. Simulation of a biological oscillator: the respiratory rhythm, J. Theor. Biol., Volume 103 (1983), pp. 113-132

[20] Ruoff, P.; Christensen, M.K.; Wolf, J.; Heinrich, R. Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations, Biophysical Chemistry, Volume 106 (2003), pp. 179-192

[21] Thibault, S.; Heyer, L.; Benchetrit, G.; Baconnier, P. Ventilatory support: a dynamical systems approach, Acta Biotheoretica, Volume 50 (2002), pp. 269-279

[22] Thom, R. Topological models in biology, Topology, Volume 8 (1969), pp. 313-335

[23] Tonnelier, A.; Meignen, S.; Bosch, H.; Demongeot, J. Synchronization and desynchronozation of neural oscillators: comparison of two models, Neural Networks, Volume 12 (1999), pp. 1213-1228

[24] Tyson, J.J. The Belousov–Zhabotinskii Reaction, Lecture Notes in Biomath., vol. 10, 1976

[25] van der Pol, B.; van der Mark, J. The heartbeat considered as a relaxation oscillation and an electrical model of the heart, Philos. Mag., Volume 6 (1928), pp. 763-775

[26] Zeeman, C. Differential equations for the heartbeat and nerve impulse, Dynamical Systems Symposium Univ. Bahia, Academic Press, New York, 1973, pp. 683-741

Cited by Sources: