Differential Geometry
Superconnection and family Bergman kernels
Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 41-44.

We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection formalism as in the local family index theorem.

Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman en famille. L'idée principale est d'utiliser le formalisme des superconnexions comme dans la preuve du théorème de l'indice local en famille.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.11.013
Ma, Xiaonan 1; Zhang, Weiping 2

1 Centre de mathématiques Laurent-Schwartz, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau cedex, France
2 Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R. China
@article{CRMATH_2007__344_1_41_0,
     author = {Ma, Xiaonan and Zhang, Weiping},
     title = {Superconnection and family {Bergman} kernels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {41--44},
     publisher = {Elsevier},
     volume = {344},
     number = {1},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.11.013/}
}
TY  - JOUR
AU  - Ma, Xiaonan
AU  - Zhang, Weiping
TI  - Superconnection and family Bergman kernels
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 41
EP  - 44
VL  - 344
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.11.013/
DO  - 10.1016/j.crma.2006.11.013
LA  - en
ID  - CRMATH_2007__344_1_41_0
ER  - 
%0 Journal Article
%A Ma, Xiaonan
%A Zhang, Weiping
%T Superconnection and family Bergman kernels
%J Comptes Rendus. Mathématique
%D 2007
%P 41-44
%V 344
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.11.013/
%R 10.1016/j.crma.2006.11.013
%G en
%F CRMATH_2007__344_1_41_0
Ma, Xiaonan; Zhang, Weiping. Superconnection and family Bergman kernels. Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 41-44. doi : 10.1016/j.crma.2006.11.013. http://www.numdam.org/articles/10.1016/j.crma.2006.11.013/

[1] Berndtsson, B. Curvature of vector bundles associated to holomorphic fibrations, 2005 | arXiv

[2] Bismut, J.-M. The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151

[3] Bismut, J.-M.; Gillet, H.; Soulé, C. Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Volume 115 (1988) no. 2, pp. 301-351

[4] Bismut, J.-M.; Köhler, K. Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684

[5] Bismut, J.-M.; Vasserot, É. The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys., Volume 125 (1989) no. 2, pp. 355-367

[6] Dai, X.; Liu, K.; Ma, X. On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41 (announced in C. R. Math. Acad. Sci. Paris, 339, 3, 2004, pp. 193-198)

[7] Donaldson, S.K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13-33

[8] Mabuchi, T. Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Volume 24 (1987) no. 2, pp. 227-252

[9] Ma, X.; Marinescu, G. The Spinc Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664

[10] Ma, X.; Marinescu, G. Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 7, pp. 493-498 (The full version:) | arXiv

[11] Ma, X.; Marinescu, G. Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254, Birkhäuser Boston, Boston, MA, 2007

[12] X. Ma, W. Zhang, Superconnection and family Bergman kernels, in press

[13] Phong, D.; Sturm, J. The Monge–Ampère operator and geodesics in the space of Kähler potentials, 2005 | arXiv

[14] Semmes, S. Complex Monge–Ampère and symplectic manifolds, Amer. J. Math., Volume 114 (1992) no. 3, pp. 495-550

Cited by Sources: