Differential Geometry/Mathematical Problems in Mechanics
Rotation fields and the fundamental theorem of Riemannian geometry in R3
[Champs de rotations et le théorème fondamental de la géométrie riemannienne dans]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 6, pp. 415-421.

R3. Soit Ω un ouvert simplement connexe de R3. On montre dans cette Note que, si un champ suffisamment régulier U de matrices symétriques définies positives d'ordre trois satisfait la relation de compatibilité (due à C. Vallée)

CURLΛ+COFΛ=0dansΩ,
où le champ Λ de matrices est défini en fonction du champ U par
Λ=1detU{U(CURLU)TU12(tr[U(CURLU)T])U},
alors il existe, typiquement dans des espaces tels que Wloc2,(Ω;R3) ou C2(Ω;R3), une immersion Θ:ΩR3 telle que U2=ΘTΘ in Ω. Dans cette approche, on cherche à identifier directement la factorisation polaire Θ=RU du gradient de l'immersion inconnue Θ en une rotation R et une extension pure U=C1/2.

Let Ω be a simply-connected open subset of R3. We show in this Note that, if a smooth enough field U of symmetric and positive-definite matrices of order three satisfies the compatibility relation (due to C. Vallée)

CURLΛ+COFΛ=0in Ω,
where the matrix field Λ is defined in terms of the field U by
Λ=1detU{U(CURLU)TU12(tr[U(CURLU)T])U},
then there exists, typically in spaces such as Wloc2,(Ω;R3) or C2(Ω;R3), an immersion Θ:ΩR3 such that U2=ΘTΘ in Ω. In this approach, one directly seeks the polar factorization Θ=RU of the gradient of the unknown immersion Θ in terms of a rotation R and a pure stretch U.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2006.08.007
Ciarlet, Philippe G. 1 ; Gratie, Liliana 2 ; Iosifescu, Oana 3 ; Mardare, Cristinel 4 ; Vallée, Claude 5

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
3 Départment de mathématiques, université de Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
4 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
5 Laboratoire de mécanique des solides, université de Poitiers, 86962 Futuroscope-Chasseneuil cedex, France
@article{CRMATH_2006__343_6_415_0,
     author = {Ciarlet, Philippe G. and Gratie, Liliana and Iosifescu, Oana and Mardare, Cristinel and Vall\'ee, Claude},
     title = {Rotation fields and the fundamental theorem of {Riemannian} geometry in $ {\mathbb{R}}^{3}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--421},
     publisher = {Elsevier},
     volume = {343},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.08.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.08.007/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Gratie, Liliana
AU  - Iosifescu, Oana
AU  - Mardare, Cristinel
AU  - Vallée, Claude
TI  - Rotation fields and the fundamental theorem of Riemannian geometry in $ {\mathbb{R}}^{3}$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 415
EP  - 421
VL  - 343
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.08.007/
DO  - 10.1016/j.crma.2006.08.007
LA  - en
ID  - CRMATH_2006__343_6_415_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Gratie, Liliana
%A Iosifescu, Oana
%A Mardare, Cristinel
%A Vallée, Claude
%T Rotation fields and the fundamental theorem of Riemannian geometry in $ {\mathbb{R}}^{3}$
%J Comptes Rendus. Mathématique
%D 2006
%P 415-421
%V 343
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.08.007/
%R 10.1016/j.crma.2006.08.007
%G en
%F CRMATH_2006__343_6_415_0
Ciarlet, Philippe G.; Gratie, Liliana; Iosifescu, Oana; Mardare, Cristinel; Vallée, Claude. Rotation fields and the fundamental theorem of Riemannian geometry in $ {\mathbb{R}}^{3}$. Comptes Rendus. Mathématique, Tome 343 (2006) no. 6, pp. 415-421. doi : 10.1016/j.crma.2006.08.007. http://www.numdam.org/articles/10.1016/j.crma.2006.08.007/

[1] Cartan, E. La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9, vol. 1, Gauthier-Villars, Paris, 1925

[2] Ciarlet, P.G. An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005

[3] P.G. Ciarlet, L. Gratie, O. Iosifescu, C. Mardare, C. Vallée, Another approach to the fundamental theorem of Riemannian geometry in R3, by way of rotation fields, J. Math. Pures Appl., in press

[4] Edelen, D.G.B. A new look at the compatibility problem of elasticity theory, Internat. J. Engrg. Sci., Volume 28 (1990), pp. 23-27

[5] Fraeijs de Veubeke, B. A new variational principle for finite elastic displacements, Internat. J. Engrg. Sci., Volume 10 (1972), pp. 745-763

[6] Grandmont, C.; Maday, Y.; Métier, P. Existence of a solution of an unsteady elasticity problem in large displacement and small perturbation, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 521-526

[7] Hamdouni, A. Interprétation géométrique de la décomposition des équations de compatibilité en grandes déformations, C. R. Acad. Sci. Paris, Sér. IIb, Volume 328 (2000), pp. 709-712

[8] Mardare, S. The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290

[9] Pietraszkiewicz, W.; Badur, J. Finite rotations in the description of continuum deformation, Internat. J. Engrg. Sci., Volume 21 (1983), pp. 1097-1115

[10] Shield, R.T. The rotation associated with large strains, SIAM J. Appl. Math., Volume 25 (1973), pp. 483-491

[11] Simo, J.C.; Marsden, J.E. On the rotated stress tensor and the material version of the Doyle–Ericksen formula, Arch. Rational Mech. Anal., Volume 86 (1984), pp. 213-231

[12] Thomas, T.Y. Systems of total differential equations defined over simply connected domains, Ann. of Math., Volume 35 (1934), pp. 730-734

[13] Vallée, C. Compatibility equations for large deformations, Internat. J. Engrg. Sci., Volume 30 (1992), pp. 1753-1757

[14] C. Vallée, A direct proof of the equivalence of compatibility relations for large deformations, in press

Cité par Sources :