Lie Algebras/Partial Differential Equations
Generating integrable one dimensional driftless diffusions
[Une méthode pour génerer des diffusions intégrables dans le cas unidimensionelle]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 6, pp. 393-398.

Nous présentons une condition nécessaire et suffisante sur le coefficient de diffusion g(x,t) d'une diffusion sans drift, afin que celle-ci puisse se réduire, par des transformations ponctuelles des variables dépendentes et indépendantes, à la forme canonique de Lie ut12uxx+Ax2u=0AR. Lie a démontré que celle-ci est la forme canonique d'une diffusion dont le groupe de symétrie est de dimension quatre ou six. Notre résultat complète donc celui de Lie, en donnant une condition locale intrinsèque sur g rendant possible une telle réduction, ainsi qu'une condition constructive, dans la mesure où elle nous permet de construire de façon explicite la solution fondamentale de l'équation correspondante.

A criterion on the diffusion coefficient is formulated that allows the classification of driftless time and state dependent diffusions that are integrable in closed form via point transformations. In the time dependent and state dependent case, a remarkable intertwining with the inhomogeneous Burger's equation is exploited. The criterion is constructive. It allows us to devise families of driftless diffusions parametrized by a rich class of several arbitrary functions for which the solution of any initial value problem can be expressed in closed form. We also derive an elegant form for the master equation for infinitesimal symmetries, previously considered only in the time homogeneous case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.05.025
Carr, Peter 1 ; Laurence, Peter 2 ; Wang, Tai-Ho 3

1 Bloomberg LP, 731, Lexington Avenue, New York, NY 10022-1331, USA
2 Dipartimento di Matematica, Piazzale Aldo Moro 2, 00185 Rome, Italy
3 Department of Mathematics, National Chung Cheng University, Chia-Yi 621, Taiwan
@article{CRMATH_2006__343_6_393_0,
     author = {Carr, Peter and Laurence, Peter and Wang, Tai-Ho},
     title = {Generating integrable one dimensional driftless diffusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {393--398},
     publisher = {Elsevier},
     volume = {343},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.05.025/}
}
TY  - JOUR
AU  - Carr, Peter
AU  - Laurence, Peter
AU  - Wang, Tai-Ho
TI  - Generating integrable one dimensional driftless diffusions
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 393
EP  - 398
VL  - 343
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.05.025/
DO  - 10.1016/j.crma.2006.05.025
LA  - en
ID  - CRMATH_2006__343_6_393_0
ER  - 
%0 Journal Article
%A Carr, Peter
%A Laurence, Peter
%A Wang, Tai-Ho
%T Generating integrable one dimensional driftless diffusions
%J Comptes Rendus. Mathématique
%D 2006
%P 393-398
%V 343
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.05.025/
%R 10.1016/j.crma.2006.05.025
%G en
%F CRMATH_2006__343_6_393_0
Carr, Peter; Laurence, Peter; Wang, Tai-Ho. Generating integrable one dimensional driftless diffusions. Comptes Rendus. Mathématique, Tome 343 (2006) no. 6, pp. 393-398. doi : 10.1016/j.crma.2006.05.025. http://www.numdam.org/articles/10.1016/j.crma.2006.05.025/

[1] Albanese, C.; Campolieti, G.; Carr, P.; Lipton, A. Black–Scholes goes hypergeometric, Risk Magazine, Volume 14 (2002) no. 12, pp. 99-103

[2] C. Albanese, G. Campolieti, Integrability by quadratures of pricing equations, Preprint, 2001

[3] C. Albanese, P. Laurence, Multi-dimensional solvable diffusions, in preparation

[4] Bachelier, L. Théorie de la spéculation, Annales des Sciences de L'Ecole Normale Superieure, Paris, Volume 17 (1900) no. 3, pp. 21-86

[5] Bluman, G. On the transformations of diffusion processes into the Wiener process, SIAM Journal on Applied Mathematics, Volume 30 (1980), pp. 238-247

[6] P. Carr, V. Linetsky, A jump to default extended CEV model: an application of Bessel processes, Working Paper, 2005

[7] Cicogna, V.; Vitali, D. Generalised symmetries of the Fokker–Planck equation, J. Phys. A: Math. Gen., Volume 22 (1989), p. L453-L456

[8] Cox, J.C. Notes on option pricing I: Constant elasticity of variance diffusions, Journal of Portfolio Management, Volume 22 (1996), pp. 15-17 (Working Paper Stanford University, reprinted in)

[9] Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A theory of the term structure of interest rates, Econometrica, Volume 53 (1985), pp. 385-407

[10] Cox, J.C.; Ross, S. The valuation of options for alternative stochastic processes, Journal of Financial Economics, Volume 3 (1976), pp. 145-166

[11] Feller, W. Two singular diffusion problems, Annals of Mathematics, Volume 54 (1951) no. 1, pp. 173-182

[12] Laurence, P.; Wang, T.H. Closed form solutions for quadratic and inverse quadratic term structure models, International Journal of Theoretical and Applied Finance, Volume 8 (2005) no. 8, pp. 1059-1083

[13] Lie, S. On integration of a class of linear partial differential equations by means of definite integrals, Archiv for Mathematik og Naturvidenskab, Volume VI (1881) no. 3, pp. 328-368 (in German)

[14] Olver, P.J. Applications of Lie Groups to Differential Equations, Springer-Verlag, 1993

[15] Rubinstein, M. Displaced diffusion option pricing, Journal of Finance, Volume 38 (1983) no. 1, pp. 213-217

[16] Spichak, S.; Stognii, V. Symmetry classification and exact solutions of the one-dimensional Fokker–Planck equation with arbitrary coefficients of drift and diffusion, J. Phys. A: Math. Gen., Volume 32 (1999), pp. 8341-8353

Cité par Sources :