Number Theory
Sieving and expanders
[Cribles et expanseurs]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 3, pp. 155-159.

Soit V l'orbite dans Zn d'un sous-groupe finiment engendré de GLn(Z) don't l'adhérence dans la topologie de Zariski est suffisament grande (p.e. est isomorphe à SL2). Nous developpons une crible combinatoire de Brun a fin d'estimer le nombre de points de V pour lesquels un system de polynômes donnés prennent des valeurs premières ou presque premières. Des propriétés d'expansion de certain « graphes de congruence » y jouent un rôle crucial, qu'on établi dans le cas Zcl(Λ)=SL2.

Let V be an orbit in Zn of a finitely generated subgroup Λ of GLn(Z) whose Zariski closure Zcl(Λ) is suitably large (e.g. isomorphic to SL2). We develop a Brun combinatorial sieve for estimating the number of points on V for which a fixed set of integral polynomials take prime or almost prime values. A crucial role is played by the expansion property of the ‘congruence graphs’ that we associate with V. This expansion property is established when Zcl(Λ)=SL2.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2006.05.023
Bourgain, Jean 1 ; Gamburd, Alex 1, 2 ; Sarnak, Peter 1, 3

1 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
2 Department of Mathematics, University of California, Santa Cruz, USA
3 Department of Mathematics, Princeton University, USA
@article{CRMATH_2006__343_3_155_0,
     author = {Bourgain, Jean and Gamburd, Alex and Sarnak, Peter},
     title = {Sieving and expanders},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--159},
     publisher = {Elsevier},
     volume = {343},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.05.023/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Gamburd, Alex
AU  - Sarnak, Peter
TI  - Sieving and expanders
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 155
EP  - 159
VL  - 343
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.05.023/
DO  - 10.1016/j.crma.2006.05.023
LA  - en
ID  - CRMATH_2006__343_3_155_0
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Gamburd, Alex
%A Sarnak, Peter
%T Sieving and expanders
%J Comptes Rendus. Mathématique
%D 2006
%P 155-159
%V 343
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.05.023/
%R 10.1016/j.crma.2006.05.023
%G en
%F CRMATH_2006__343_3_155_0
Bourgain, Jean; Gamburd, Alex; Sarnak, Peter. Sieving and expanders. Comptes Rendus. Mathématique, Tome 343 (2006) no. 3, pp. 155-159. doi : 10.1016/j.crma.2006.05.023. http://www.numdam.org/articles/10.1016/j.crma.2006.05.023/

[1] J. Bourgain, Exponential sum estimates over subgroups of Zq*, q arbitrary, J. Analyse, in press

[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(Fp), preprint, 2005

[3] J. Bourgain, A. Gamburd, P. Sarnak, Spectral sieving of thin sets, in preparation

[4] J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, Proc. London Math. Soc., in press

[5] Bourgain, J.; Katz, N.; Tao, T. A sum–product estimate in finite fields and applications, GAFA, Volume 14 (2004), pp. 27-57

[6] Gamburd, A. Spectral gap for infinite index “congruence” subgroups of SL2(Z), Israel J. Math., Volume 127 (2002), pp. 157-200

[7] B. Green, T. Tao, Linear equations in primes, preprint

[8] Halberstam, H.; Richert, H. Sieve Methods, Academic Press, 1974

[9] Hardy, G.H.; Littlewood, J.E. Some problems of ‘Partitio Numerorum’: III. On the expression of a number as a sum of primes, Acta Math., Volume 44 (1922), pp. 1-70

[10] H. Helfgott, Growth and generation in SL2(Z/pZ), preprint, 2005

[11] Iwaniec, H.; Kowalski, E. Analytic Number Theory, Amer. Math. Soc., 2004

[12] Lax, P.D.; Phillips, R.S. The asymptotic distribution of lattice points in Euclidean and non-Euclidean space, J. Funct. Anal., Volume 46 (1982), pp. 280-350

[13] Lubotzky, A. Cayley graphs: eigenvalues, expanders and random walks (Rowbinson, P., ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, pp. 155-189

[14] Matthews, C.; Vaserstein, L.; Weisfeiler, B. Congruence properties of Zariski-dense subgroups, Proc. London Math. Soc., Volume 48 (1984), pp. 514-532

[15] A. Nevo, P. Sarnak, in preparation

[16] Patterson, S.J. The limit set of a Fuchsian group, Acta Math., Volume 136 (1975), pp. 241-273

[17] Sarnak, P. What is an expander?, Notices Amer. Math. Soc., Volume 51 (2004), pp. 762-763

[18] Sarnak, P. Notes on the generalized Ramanujan conjectures, Clay Math. Proc., Volume 4 (2005), pp. 659-685

[19] Sarnak, P.; Xue, X. Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227

[20] Schinzel, A.; Sierpinksi, W. Sur certaines hypotheses concernant les nombres premiers, Acta Arith., Volume 4 (1958), pp. 185-208

[21] Selberg, A. On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Volume 19 (1947), pp. 64-67

[22] Selberg, A. On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., 1965, pp. 1-15

[23] Tits, J. Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270

[24] Vinogradov, I.M. Representations of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR, Volume 15 (1937), pp. 291-294

Cité par Sources :