Statistics/Mathematical Analysis
Rates of convergence for nonparametric deconvolution
Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 877-882.

This note presents original rates of convergence for the deconvolution problem. We assume that both the estimated density and noise density are supersmooth and we compute the risk for two kinds of estimators.

Cette Note présente des vitesses de convergence originales pour le problème de déconvolution. On suppose que la densité estimée ainsi que la densité du bruit sont « supersmooth » et on calcule le risque pour deux types d'estimateurs.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.04.006
Lacour, Claire 1

1 Laboratoire MAP 5, Université Paris 5, 45, rue des Saints-Pères, 75270 Paris cedex 06, France
@article{CRMATH_2006__342_11_877_0,
     author = {Lacour, Claire},
     title = {Rates of convergence for nonparametric deconvolution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {877--882},
     publisher = {Elsevier},
     volume = {342},
     number = {11},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.04.006/}
}
TY  - JOUR
AU  - Lacour, Claire
TI  - Rates of convergence for nonparametric deconvolution
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 877
EP  - 882
VL  - 342
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.04.006/
DO  - 10.1016/j.crma.2006.04.006
LA  - en
ID  - CRMATH_2006__342_11_877_0
ER  - 
%0 Journal Article
%A Lacour, Claire
%T Rates of convergence for nonparametric deconvolution
%J Comptes Rendus. Mathématique
%D 2006
%P 877-882
%V 342
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.04.006/
%R 10.1016/j.crma.2006.04.006
%G en
%F CRMATH_2006__342_11_877_0
Lacour, Claire. Rates of convergence for nonparametric deconvolution. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 877-882. doi : 10.1016/j.crma.2006.04.006. http://www.numdam.org/articles/10.1016/j.crma.2006.04.006/

[1] Butucea, C. Deconvolution of supersmooth densities with smooth noise, Canad. J. Statist., Volume 32 (2004), pp. 181-192

[2] C. Butucea, A.B. Tsybakov, Sharp optimality for density deconvolution with dominating bias, Theory Probab. Appl., 2006, in press

[3] Carrol, R.J.; Hall, P. Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., Volume 83 (1988), pp. 1184-1186

[4] F. Comte, Y. Rozenholc, M.-L. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canad. J. Statist. 34, 2006, in press

[5] Devroye, L. Consistent deconvolution in density estimation, Canad. J. Statist., Volume 17 (1989), pp. 235-239

[6] Fan, J. On the optimal rates of convergence for nonparametric deconvolution problem, Ann. Statist., Volume 19 (1991), pp. 1257-1272

[7] Fan, J. Adaptively local one-dimensional subproblems with application to a deconvolution problem, Ann. Statist., Volume 21 (1993), pp. 600-610

[8] Liu, M.C.; Taylor, R.L. A consistent non-parametric density estimator for the deconvolution problem, Canad. J. Statist., Volume 17 (1989), pp. 427-438

[9] Pensky, M.; Vidakovic, B. Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist., Volume 27 (1999), pp. 2033-2053

[10] Stefanski, L. Rates of convergence of some estimators in a class of deconvolution problems, Statist. Probab. Lett., Volume 9 (1990), pp. 229-235

[11] Tsybakov, A.B. On the best rate of adaptive estimation in some inverse problems, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 835-840

Cited by Sources: