Partial Differential Equations
Critical space for the parabolic-parabolic Keller–Segel model in Rd
[Espace critique pour le modèle de Keller–Segel parabolique-parabolique dans Rd]
Comptes Rendus. Mathématique, Tome 342 (2006) no. 10, pp. 745-750.

Nous considérons le système de Keller–Segel posé sur Rd dans le cas d'une équation parabolique sur le chemoattractant. Nous démontrons que l'espace critique, comme dans le cas elliptique, est que la densité bactérienne initiale vérifie n0La(Rd), a>d/2, et que la concentration initiale de chémoattractant vérifie c0Ld(Rd). Dans ces espaces, une donnée initiale petite donne des solutions globales qui tendent vers 0 en temps grand comme l'équation de la chaleur ainsi que des effets régularisants de type hypercontractifs.

We study the Keller–Segel system in Rd when the chemoattractant concentration is described by a parabolic equation. We prove that the critical space, with some similarity to the elliptic case, is that the initial bacteria density satisfies n0La(Rd), a>d/2, and that the chemoattractant concentration satisfies c0Ld(Rd). In these spaces, we prove that small initial data give rise to global solutions that vanish as the heat equation for large times and that exhibit a regularizing effect of hypercontractivity type.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.03.008
Corrias, Lucilla 1 ; Perthame, Benoît 2

1 Département de mathématiques, Université d'Évry Val d'Essonne, rue du pere Jarlan, 91025 Evry cedex, France
2 DMA (UMR CNRS no. 8553), École normale supérieure, 45, rue d'Ulm, 75005 Paris cedex 05, France
@article{CRMATH_2006__342_10_745_0,
     author = {Corrias, Lucilla and Perthame, Beno{\^\i}t},
     title = {Critical space for the parabolic-parabolic {Keller{\textendash}Segel} model in $ {\mathbb{R}}^{d}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {745--750},
     publisher = {Elsevier},
     volume = {342},
     number = {10},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.03.008/}
}
TY  - JOUR
AU  - Corrias, Lucilla
AU  - Perthame, Benoît
TI  - Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 745
EP  - 750
VL  - 342
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.03.008/
DO  - 10.1016/j.crma.2006.03.008
LA  - en
ID  - CRMATH_2006__342_10_745_0
ER  - 
%0 Journal Article
%A Corrias, Lucilla
%A Perthame, Benoît
%T Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$
%J Comptes Rendus. Mathématique
%D 2006
%P 745-750
%V 342
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.03.008/
%R 10.1016/j.crma.2006.03.008
%G en
%F CRMATH_2006__342_10_745_0
Corrias, Lucilla; Perthame, Benoît. Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$. Comptes Rendus. Mathématique, Tome 342 (2006) no. 10, pp. 745-750. doi : 10.1016/j.crma.2006.03.008. http://www.numdam.org/articles/10.1016/j.crma.2006.03.008/

[1] P. Biler, G. Karch, P. Laurençot, The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol. Methods Nonlin. Anal. (2005), in press

[2] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions, (2006), in preparation

[3] Brenner, M.P.; Constantin, P.; Kadanoff, L.P.; Schenkel, A.; Venkataramani, S.C. Diffusion, attraction and collapse, Nonlinearity, Volume 12 (1999), pp. 1071-1098

[4] V. Calvez, B. Perthame, M. Sharifi Tabar, Modified Keller–Segel system and critical mass for the log interaction kernel, (2006), in preparation

[5] Corrias, L.; Perthame, B.; Zaag, H. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., Volume 72 (2004), pp. 1-29

[6] Dolbeault, J.; Perthame, B. Optimal critical mass in the two-dimensional Keller–Segel model in R2, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 611-616

[7] Herrero, M.A.; Medina, E.; Velázquez, J.J.L. Self-similar blow-up for a reaction–diffusion system, J. Comput. Appl. Math., Volume 97 (1998), pp. 99-119

[8] Horstmann, D. From 1970 until now: The Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutch. Math.-Verein., Volume 105 (2003), pp. 103-165

[9] Horstmann, D. From 1970 until now: The Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutch. Math.-Verein., Volume 106 (2004), pp. 51-69

[10] Jäger, W.; Luckhaus, S. On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[11] Keller, E.F.; Segel, L.A. Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234

[12] Murray, J.D. Spatial models and biomedical applications, Mathematical Biology, II, Interdiscip. Appl. Math., vol. 18, Springer-Verlag, New York, 2003

[13] Nagai, T.; Senba, T. Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998), pp. 145-156

[14] Nagai, T.; Syukuinn, R.; Umesako, M. Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in Rn, Funkcial. Ekvac., Volume 46 (2003), pp. 383-407

[15] Rascle, M.; Ziti, C. Finite time blow-up in some models of chemotaxis, J. Math. Biol., Volume 33 (1995), pp. 388-414

[16] J. Renclawowicz, T. Hillen, Analysis of an attraction–repulsion chemotaxis model, Preprint, 2006

[17] Velázquez, J.J.L. Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., Volume 62 (2002), pp. 1581-1633 (electronic)

Cité par Sources :