Mathematical Problems in Mechanics
Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems
Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 711-716.

This note is concerned with the non-linear shallow shell model introduced in 1966 by W.T. Koiter, and later studied by M. Bernadou and J.T. Oden. We show the uniqueness of the solution to the dynamical model and that this solution is continuous with respect to the initial data.

Dans cette Note, nous nous intéressons au modèle introduit en 1966 par W.T. Koiter, puis étudié par M. Bernadou et J.T. Oden. Nous démontrons l'unicité de la solution du modèle dynamique et que cette solution est continue par rapport aux conditions initiales.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.02.034
Cagnol, John 1; Lasiecka, Irena 2; Lebiedzik, Catherine 3; Marchand, Richard 4

1 Pôle universitaire Leonard-de-Vinci, ESILV, DER CS, 92916 Paris La Défense cedex, France
2 University of Virginia, Department of Mathematics, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA
3 Wayne State University, Department of Mathematics, 656 W. Kirby, Room 1150, Detroit, MI 48202, USA
4 Slippery Rock University, Department of Mathematics, 229 Vincent Science Hall, Slippery Rock, PA 16057, USA
@article{CRMATH_2006__342_9_711_0,
     author = {Cagnol, John and Lasiecka, Irena and Lebiedzik, Catherine and Marchand, Richard},
     title = {Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {711--716},
     publisher = {Elsevier},
     volume = {342},
     number = {9},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.02.034/}
}
TY  - JOUR
AU  - Cagnol, John
AU  - Lasiecka, Irena
AU  - Lebiedzik, Catherine
AU  - Marchand, Richard
TI  - Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 711
EP  - 716
VL  - 342
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.02.034/
DO  - 10.1016/j.crma.2006.02.034
LA  - en
ID  - CRMATH_2006__342_9_711_0
ER  - 
%0 Journal Article
%A Cagnol, John
%A Lasiecka, Irena
%A Lebiedzik, Catherine
%A Marchand, Richard
%T Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems
%J Comptes Rendus. Mathématique
%D 2006
%P 711-716
%V 342
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.02.034/
%R 10.1016/j.crma.2006.02.034
%G en
%F CRMATH_2006__342_9_711_0
Cagnol, John; Lasiecka, Irena; Lebiedzik, Catherine; Marchand, Richard. Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 711-716. doi : 10.1016/j.crma.2006.02.034. http://www.numdam.org/articles/10.1016/j.crma.2006.02.034/

[1] Bernadou, M. Méthodes d'Eléments Finis pour les Problèmes de Coques Minces, Masson, Paris, 1994

[2] Bernadou, M.; Oden, J.T. An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl. (9), Volume 60 (1981) no. 3, pp. 285-308

[3] Cagnol, J.; Lasiecka, I.; Lebiedzik, C.; Zolésio, J.-P. Uniform stability in structural acoustic models with flexible curved walls, J. Differential Equations, Volume 186 (2002) no. 1, pp. 88-121

[4] J. Cagnol, I. Lasiecka, C. Lebiedzik, R. Marchand, Hadamard wellposedness for a class of non-linear shallow shell problems, ESILV, DER-CS RR-28, Pôle Universitaire L. de Vinci, Paris La Défense, France, 2005

[5] Ciarlet, P.G. Mathematical Elasticity, vol. III: Theory of Shells, Stud. Math. Appl., vol. 29, North-Holland Publishing Co., Amsterdam, 2000

[6] M.C. Delfour, J.-P. Zolésio, Intrinsic differential geometry and theory of thin shells, in press

[7] Delfour, M.C.; Zolésio, J.-P. Differential equations for linear shells: comparison between intrinsic and classical models, Adv. Math. Sci., CRM Proc. Lect. Notes, vol. 11, Amer. Math. Soc., 1997, pp. 41-124

[8] Koch, H.; Lasiecka, I. Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity—full von Karman systems, Progr. Nonlinear Differential Equations Appl., Volume 50 (2002), pp. 197-216

[9] Koiter, W.T. On the nonlinear theory of thin elastic shells. III, Nederl. Akad. Wetensch. Proc. Ser. B, Volume 69 (1966), pp. 33-54

[10] Lions, J.-L.; Magenes, E. Problèmes aux limites non homogènes et applications, Dunod, 1968

[11] Naghdi, P.M. Foundations of elastic shell theory, Progr. Solid Mech., vol. IV, North-Holland, Amsterdam, 1963, pp. 1-90

[12] Sanders, Jr.; Lyell, J. Nonlinear theories for thin shells, Quart. Appl. Math., Volume 21 (1963), pp. 21-36

[13] Sedenko, V.I. On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre–Vlasov of shallow shells with clamped boundary conditions, Appl. Math. Optim., Volume 39 (1999) no. 3, pp. 309-326

Cited by Sources: