Numerical Analysis
A hyperbolic three-phase flow model
[Un modèle hyperbolique d'écoulement triphasique]
Comptes Rendus. Mathématique, Tome 342 (2006) no. 10, pp. 779-784.

On introduit un modèle hyperbolique pour la modélisation des écoulements triphasiques, qui est muni d'une inégalité d'entropie physique et assure la positivité des fractions volumiques, des densités et énergies internes dans les ondes simples apparaissant dans le problème de Riemann unidimensionnel.

We introduce a hyperbolic entropy-consistent model to describe three-phase flows, which ensures that void fractions, mass fractions and pressures remain positive through single waves occurring in the one dimensional solution of the Riemann problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.02.012
Hérard, Jean-Marc 1, 2

1 Département M.F.E.E., E.D.F., Recherche et Développement, 6, quai Watier, 78401 Chatou cedex, France
2 L.A.T.P. (UMR CNRS 6632), C.M.I., université Aix-Marseille I, 39, rue Joliot Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2006__342_10_779_0,
     author = {H\'erard, Jean-Marc},
     title = {A hyperbolic three-phase flow model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {342},
     number = {10},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.02.012/}
}
TY  - JOUR
AU  - Hérard, Jean-Marc
TI  - A hyperbolic three-phase flow model
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 779
EP  - 784
VL  - 342
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.02.012/
DO  - 10.1016/j.crma.2006.02.012
LA  - en
ID  - CRMATH_2006__342_10_779_0
ER  - 
%0 Journal Article
%A Hérard, Jean-Marc
%T A hyperbolic three-phase flow model
%J Comptes Rendus. Mathématique
%D 2006
%P 779-784
%V 342
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.02.012/
%R 10.1016/j.crma.2006.02.012
%G en
%F CRMATH_2006__342_10_779_0
Hérard, Jean-Marc. A hyperbolic three-phase flow model. Comptes Rendus. Mathématique, Tome 342 (2006) no. 10, pp. 779-784. doi : 10.1016/j.crma.2006.02.012. http://www.numdam.org/articles/10.1016/j.crma.2006.02.012/

[1] Baer, M.R.; Nunziato, J.W. A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12 (1986) no. 6, pp. 861-889

[2] Baudin, N.; Berthon, C.; Coquel, F.; Masson, R.; Tran, H. A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math., Volume 99 (2005) no. 3, pp. 411-440

[3] Buffard, T.; Gallouët, T.; Hérard, J.M. A sequel to a rough Godunov scheme. Application to real gas flows, Computers and Fluids, Volume 29 (2000) no. 7, pp. 813-847

[4] F. Caro, F. Coquel, D. Jamet, S. Kokh, DINMOD: a diffuse interface model for two-phase flows modelling, Internal CEA report DEN/DM2S/SFME/LETR, 2004

[5] Chen, Z.; Ewing, R. Comparison of various formulations of three-phase flow in porous media, J. Comput. Phys., Volume 132 (1997), pp. 362-373

[6] Coquel, F.; El Amine, K.; Godlewski, E.; Perthame, B.; Rascle, P. A numerical method using upwind schemes for the resolution of two phase flows, J. Comput. Phys., Volume 136 (1997), pp. 272-288

[7] Coquel, F.; Gallouët, T.; Hérard, J.M.; Seguin, N. Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2002), pp. 927-932

[8] Coquel, F.; Perthame, B. Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2223-2249

[9] Frid, H.; Shelukhin, V. A quasi-linear parabolic system for three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 1029-1041

[10] Frid, H.; Shelukhin, V. Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 36 (2005) no. 5, pp. 1407-1425

[11] Gallouët, T.; Hérard, J.M.; Seguin, N. Numerical modelling of two phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 5, pp. 663-700

[12] Gavrilyuk, S.; Gouin, H.; Perepechko, Y.V. A variational principle for two fluid models, C. R. Acad. Sci. Paris, Ser. IIb, Volume 324 (1997), pp. 483-490

[13] Glimm, J.; Saltz, D.; Sharp, D.H. Two phase flow modelling of a fluid mixing layer, J. Fluid Mech., Volume 378 (1999), pp. 119-143

[14] Gouin, H.; Gavrilyuk, S. Hamilton's principle and Rankine Hugoniot conditions for general motions of mixtures, Mechanica, Volume 34 (1999), pp. 39-47

[15] J.M. Hérard, A three-phase flow model, Internal EDF report HI-81/04/11A, 2005

[16] J.M. Hérard, O. Hurisse, A relaxation method to compute two-fluid models, Internal EDF report HI-81/05/02A, 2005

[17] Kapila, A.K.; Son, S.F.; Bdzil, J.B.; Menikoff, R.; Stewart, D.S. Two phase modeling of a DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9 (1997) no. 12, pp. 3885-3897

[18] M. Valette, S. Jayanti, Annular dispersed flow calculations with a two-phase three field model, European Two Phase Flow Group Meeting, Norway, Internal CEA report DTP/SMTH/LMDS/2003-085, 2003

Cité par Sources :