Équations aux dérivées partielles
Symétrie des grandes solutions d'équations elliptiques semi linéaires
Comptes Rendus. Mathématique, Tome 342 (2006) no. 7, pp. 483-487.

Soit g une fonction localement lipschitzienne de la variable réelle. On suppose que g vérifie la condition de Keller et Osserman et qu'il existe un réel a>0 tel que g est convexe sur [a,+[. Alors toute solution u de Δu+g(u)=0 dans une boule B de RN, N2, qui tend vers l'infini au bord de B, est une fonction radiale.

Let g be a locally Lipschitz continuous function defined on R. We assume that g satisfies the Keller–Osserman condition and there exists a positive real number a such that g is convex on [a,). Then any solution u of Δu+g(u)=0 in a ball B of RN, N2, which tends to infinity on ∂B, is spherically symmetric.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2006.01.020
Porretta, Alessio 1 ; Véron, Laurent 2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italie
2 Laboratoire de mathématiques et physique théorique, CNRS UMR 6083, faculté des sciences, 37200 Tours, France
@article{CRMATH_2006__342_7_483_0,
     author = {Porretta, Alessio and V\'eron, Laurent},
     title = {Sym\'etrie des grandes solutions d'\'equations elliptiques semi lin\'eaires},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {483--487},
     publisher = {Elsevier},
     volume = {342},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.020},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.01.020/}
}
TY  - JOUR
AU  - Porretta, Alessio
AU  - Véron, Laurent
TI  - Symétrie des grandes solutions d'équations elliptiques semi linéaires
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 483
EP  - 487
VL  - 342
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.01.020/
DO  - 10.1016/j.crma.2006.01.020
LA  - fr
ID  - CRMATH_2006__342_7_483_0
ER  - 
%0 Journal Article
%A Porretta, Alessio
%A Véron, Laurent
%T Symétrie des grandes solutions d'équations elliptiques semi linéaires
%J Comptes Rendus. Mathématique
%D 2006
%P 483-487
%V 342
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.01.020/
%R 10.1016/j.crma.2006.01.020
%G fr
%F CRMATH_2006__342_7_483_0
Porretta, Alessio; Véron, Laurent. Symétrie des grandes solutions d'équations elliptiques semi linéaires. Comptes Rendus. Mathématique, Tome 342 (2006) no. 7, pp. 483-487. doi : 10.1016/j.crma.2006.01.020. http://www.numdam.org/articles/10.1016/j.crma.2006.01.020/

[1] Aftalion, A.; del Pino, M.; Letelier, R. Multiple boundary blow-up solutions for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003) no. 2, pp. 225-235

[2] Du, Y.; Guo, Z. Uniqueness and layer analysis for boundary blow-up solutions, J. Math. Pures Appl., Volume 83 (2004) no. 6, pp. 739-763

[3] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 68 (1979), pp. 209-243

[4] Keller, J.B. On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[5] Marcus, M.; Veron, L. Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274

[6] Marcus, M.; Véron, L. Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evolution Equations, Volume 3 (2003), pp. 637-652

[7] McKenna, P.J.; Reichel, W.; Walter, W. Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Anal., Volume 28 (1997) no. 7, pp. 1213-1225

[8] Osserman, R. On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[9] Pohožaev, S.I. The boundary value problem for equation ΔU=U2, Dokl. Akad. Nauk SSSR, Volume 138 (1961), pp. 305-308 (in Russian)

Cité par Sources :