Numerical Analysis
Finite elements for a prefractal transmission problem
Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 211-214.

In this Note we deal with the finite element approximation of a transmission problem across a prefractal curve approximating the von Koch fractal curve. We construct a mesh adapted to the geometric shape of the interface and we refine it consistently with some estimates in suitable weighted Sobolev spaces. In these spaces we also obtain an approximation error estimate.

Cette Note concerne l'approximation éléments finis d'un problème de transmission à travers la courbe préfractale approchant la courbe fractale de von Koch. On construit un maillage adapté à la géométrie de l'interface et on génère un processus de raffinement de maillage en utilisant des estimations dans des espaces de Sobolev à poids, choisis convenablement. On obtient aussi dans ces espaces une estimation de l'erreur d'approximation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.11.023
Bagnerini, Patrizia 1; Buffa, Annalisa 2; Vacca, Elisa 3

1 DIPTEM, Università degli Studi di Genova, P.le Kennedy-Pad D, 16129 Genova, Italy
2 Istituto di Matematica Applicata e Tecnologie Informatiche del CNR, Via Ferrata 1, 27100 Pavia, Italy
3 Dipartimento Me.Mo.Mat., Università degli Studi di Roma “La Sapienza”, Via Scarpa 16, 00161 Roma, Italy
@article{CRMATH_2006__342_3_211_0,
     author = {Bagnerini, Patrizia and Buffa, Annalisa and Vacca, Elisa},
     title = {Finite elements for a prefractal transmission problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {211--214},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2005.11.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2005.11.023/}
}
TY  - JOUR
AU  - Bagnerini, Patrizia
AU  - Buffa, Annalisa
AU  - Vacca, Elisa
TI  - Finite elements for a prefractal transmission problem
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 211
EP  - 214
VL  - 342
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2005.11.023/
DO  - 10.1016/j.crma.2005.11.023
LA  - en
ID  - CRMATH_2006__342_3_211_0
ER  - 
%0 Journal Article
%A Bagnerini, Patrizia
%A Buffa, Annalisa
%A Vacca, Elisa
%T Finite elements for a prefractal transmission problem
%J Comptes Rendus. Mathématique
%D 2006
%P 211-214
%V 342
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2005.11.023/
%R 10.1016/j.crma.2005.11.023
%G en
%F CRMATH_2006__342_3_211_0
Bagnerini, Patrizia; Buffa, Annalisa; Vacca, Elisa. Finite elements for a prefractal transmission problem. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 211-214. doi : 10.1016/j.crma.2005.11.023. http://www.numdam.org/articles/10.1016/j.crma.2005.11.023/

[1] Babuška, I.; Kellog, R.B.; Pitkäranta, J. Directe and inverse error estimates for finite elements with mesh refinements, Numer. Math., Volume 33 (1979), pp. 447-471

[2] Brezzi, F.; Gilardi, G. Finite elements mathematics (Kardestuncer, H.; Norrie, D.H., eds.), Finite Element Handbook, MacGraw-Hill Book Co., New York, 1987

[3] Ciarlet, P.G. Basic error estimates for elliptic problems (Ciarlet, P.G.; Lions, J.L., eds.), Handbook of Numerical Analysis, North-Holland, Amsterdam, 1991, pp. 16-351

[4] Filoche, M.; Sapoval, B. Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett., Volume 84 (2000), pp. 5776-5779

[5] Lancia, M.R. Second order transmission problem across a fractal surface, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), Volume 27 (2003), pp. 191-213

[6] Lancia, M.R.; Vivaldi, M.A. On the regularity of the solutions for transmission problems, Adv. Math. Sci. Appl., Volume 12 (2002), pp. 455-466

Cited by Sources: