Dynamical Systems
Normal forms for nonlinear control systems with scalar output
Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 573-578.

We propose a normal form for nonlinear control systems with scalar output. We follow an approach proposed by Poincaré and adapted for control systems by Kang and Krener which consists of analyzing, step-by-step, the action of the change of coordinates on the system.

Nous présentons dans cette Note une forme normale pour les sytèmes de contrôle non linéaires mono-sortie. Nous suivons une approche proposée par Poincaré et adaptée aux systèmes de contrôle par Kang et Krener, consistant à analyser, pas-à-pas, l'action du changement de coordonnées sur le système.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.09.023
Tall, Issa A. 1; Balde, Moussa 2

1 Department of Mathematics, Natural Sciences Division, Tougaloo College, 500 W. County Line Road, Jackson, MS 39174, USA
2 Département de mathématiques et informatique, faculté des sciences et techniques, université Cheikh Anta Diop de Dakar, Dakar, Sénégal
@article{CRMATH_2005__341_9_573_0,
     author = {Tall, Issa A. and Balde, Moussa},
     title = {Normal forms for nonlinear control systems with scalar output},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {573--578},
     publisher = {Elsevier},
     volume = {341},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2005.09.023/}
}
TY  - JOUR
AU  - Tall, Issa A.
AU  - Balde, Moussa
TI  - Normal forms for nonlinear control systems with scalar output
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 573
EP  - 578
VL  - 341
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2005.09.023/
DO  - 10.1016/j.crma.2005.09.023
LA  - en
ID  - CRMATH_2005__341_9_573_0
ER  - 
%0 Journal Article
%A Tall, Issa A.
%A Balde, Moussa
%T Normal forms for nonlinear control systems with scalar output
%J Comptes Rendus. Mathématique
%D 2005
%P 573-578
%V 341
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2005.09.023/
%R 10.1016/j.crma.2005.09.023
%G en
%F CRMATH_2005__341_9_573_0
Tall, Issa A.; Balde, Moussa. Normal forms for nonlinear control systems with scalar output. Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 573-578. doi : 10.1016/j.crma.2005.09.023. http://www.numdam.org/articles/10.1016/j.crma.2005.09.023/

[1] Arnold, V.I. Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin/New York, 1983

[2] I. Belmouhoub, M. Diemaï, J.P. Barbot, Observability quadratic normal form for discrete-time systems, Preprint

[3] L. Boutat, D. Boutat, J.P. Barbot, R. Tauleigne, Quadratic observability normal form, in: Proc. of the 40th IEEE Conf. on Decision & Control, Orlando, FL, 2001

[4] Kang, W. Extended controller form and invariants of nonlinear control systems with single input, J. Math. Systems Estimat. Control, Volume 4 (1994), pp. 253-256

[5] Kang, W.; Krener, A.J. Locally convergent nonlinear observers, SIAM J. Control Optim., Volume 42 (2003) no. 1, pp. 155-177

[6] Kang, W.; Krener, A.J. Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems, SIAM J. Control Optim., Volume 30 (1992), pp. 1319-1337

[7] Krener, A.J.; Isidori, A. Linearization by output injection and nonlinear observers, Systems Control Lett., Volume 3 (1983), pp. 47-52

[8] Krener, A.J.; Respondek, W. Nonlinear observers with linearizable error dynamics, SIAM J. Control, Optim., Volume 23 (1985) no. 2

[9] Poincaré, H. Sur les propriétés des fonctions définies par les équations aux différences partielles, Oeuvres, Gauthier-Villars, Paris, 1929 (pp. XCIX–CX)

[10] Respondek, W.; Tall, I.A. Nonlinearizable single-input control systems do not admit stationary symmetries, Systems Control Lett., Volume 46 (2002), pp. 1-16

[11] W. Respondek, I.A. Tall, Strict feedforward form and symmetries of nonlinear control systems, in: Proc. of the 43rd IEEE Conf. on Decision and Control, Bahamas, 2004

Cited by Sources: