Probability Theory
Existence of weak solutions to stochastic evolution inclusions
[Existence de solutions faibles d'inclusions d'évolution stochastiques]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 3, pp. 229-234.

Nous démontrons l'existence d'une solution d'évolution faible (ou solution-mesure d'évolution) de l'inclusion différentielle stochastique dans un espace de Hilbert dXtAXtdt+F(t,Xt)dt+G(t,Xt)dWtW est un mouvement brownien cylindrique, A est un opérateur linéaire qui engendre un semi-groupe de classe C0, F et G sont des multifonctions à valeurs convexes compactes vérifiant une condition de croissance linéaire ainsi qu'une condition plus générale que la condition de Lipschitz. La solution faible est construite au sens des mesures de Young. Lorsque F et G sont univoques, on obtient l'existence d'une solution forte.

We prove the existence of a weak mild solution (or mild solution-measure) to the Cauchy problem for the semilinear stochastic differential inclusion in a Hilbert space dXtAXtdt+F(t,Xt)dt+G(t,Xt)dWt where W is a cylindrical Wiener process, A is a linear operator which generates a C0-semigroup, F and G are multifunctions with convex compact values satisfying a linear growth condition and a condition weaker than the Lipschitz condition. The weak solution is constructed in the sense of Young measures. In the case when F and G are single-valued, we obtain the existence of a strong solution.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.12.015
Jakubowski, Adam 1 ; Kamenskiı̆, Mikhail I. 2 ; Raynaud de Fitte, Paul 3

1 Nicholas Copernicus University, Faculty of Mathematics and Informatics, ul. Chopina 12/18, 87-100 Toruń, Poland
2 Departement of Mathematics, State University of Voronezh, Voronezh, Universitetskaja pl. 1, 394693, Russia
3 Laboratoire de mathematique R. Salem, UMR CNRS 6085, UFR sciences, université de Rouen, 76821 Mont Saint Aignan cedex, France
@article{CRMATH_2005__340_3_229_0,
     author = {Jakubowski, Adam and Kamenski{\i}̆, Mikhail I. and Raynaud de Fitte, Paul},
     title = {Existence of weak solutions to stochastic evolution inclusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--234},
     publisher = {Elsevier},
     volume = {340},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crma.2004.12.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.12.015/}
}
TY  - JOUR
AU  - Jakubowski, Adam
AU  - Kamenskiı̆, Mikhail I.
AU  - Raynaud de Fitte, Paul
TI  - Existence of weak solutions to stochastic evolution inclusions
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 229
EP  - 234
VL  - 340
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.12.015/
DO  - 10.1016/j.crma.2004.12.015
LA  - en
ID  - CRMATH_2005__340_3_229_0
ER  - 
%0 Journal Article
%A Jakubowski, Adam
%A Kamenskiı̆, Mikhail I.
%A Raynaud de Fitte, Paul
%T Existence of weak solutions to stochastic evolution inclusions
%J Comptes Rendus. Mathématique
%D 2005
%P 229-234
%V 340
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.12.015/
%R 10.1016/j.crma.2004.12.015
%G en
%F CRMATH_2005__340_3_229_0
Jakubowski, Adam; Kamenskiı̆, Mikhail I.; Raynaud de Fitte, Paul. Existence of weak solutions to stochastic evolution inclusions. Comptes Rendus. Mathématique, Tome 340 (2005) no. 3, pp. 229-234. doi : 10.1016/j.crma.2004.12.015. http://www.numdam.org/articles/10.1016/j.crma.2004.12.015/

[1] Akhmerov, R.R.; Kamenskiı̆, M.I.; Potapov, A.S.; Rodkina, B.N.; Sadovskiı̆, B.N. Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992

[2] Balder, E.J. New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl., Volume 151 (1990), pp. 1-16

[3] Barbu, D. Local and global existence for mild solutions of stochastic differential equations, Portugal. Math., Volume 55 (1998), pp. 411-424

[4] Barbu, D.; Bocşan, G. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients, Czechoslovak Math. J., Volume 52 (2002) no. 127, pp. 87-95

[5] Da Prato, G.; Frankowska, H. A stochastic Filippov theorem, Stochastic Anal. Appl., Volume 12 (1994), pp. 409-426

[6] Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1992

[7] Jacod, J.; Mémin, J. Weak and strong solutions of stochastic differential equations: existence and stability, Stochastic Integrals, Proc. Sympos., Univ. Durham, Durham, 1980, Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 169-212

[8] Kamenskiı̆, M.I.; Obukhovskiı̆, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin, 2001

[9] Kucia, A. Some results on Carathéodory selections and extensions, J. Math. Anal. Appl., Volume 223 (1998), pp. 302-318

[10] Pellaumail, J. Solutions faibles et semi-martingales (Azéma, J.; Yor, M., eds.), Séminaire de Probabilités XV, 1979/80, Université de Strasbourg, Lecture Notes in Math., vol. 850, Springer-Verlag, Berlin, 1981, pp. 561-586

[11] Rodkina, A.E. On existence and uniqueness of solution of stochastic differential equations with heredity, Stochastics, Volume 12 (1984), pp. 187-200

[12] Taniguchi, T. Successive approximations to solutions of stochastic differential equations, J. Differential Equations, Volume 96 (1992), pp. 152-169

Cité par Sources :