Algebraic Geometry/Topology
The fundamental group of an algebraic link
Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 141-146.

We compute the fundamental group of an algebraic link.

On calcule le groupe fondamental d'un entrelacs algébrique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.12.014
Neto, Orlando 1; Silva, Pedro C. 2

1 CMAF/FCUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
2 CMAF/ISA-UTL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2005__340_2_141_0,
     author = {Neto, Orlando and Silva, Pedro C.},
     title = {The fundamental group of an algebraic link},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {141--146},
     publisher = {Elsevier},
     volume = {340},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crma.2004.12.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.12.014/}
}
TY  - JOUR
AU  - Neto, Orlando
AU  - Silva, Pedro C.
TI  - The fundamental group of an algebraic link
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 141
EP  - 146
VL  - 340
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.12.014/
DO  - 10.1016/j.crma.2004.12.014
LA  - en
ID  - CRMATH_2005__340_2_141_0
ER  - 
%0 Journal Article
%A Neto, Orlando
%A Silva, Pedro C.
%T The fundamental group of an algebraic link
%J Comptes Rendus. Mathématique
%D 2005
%P 141-146
%V 340
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.12.014/
%R 10.1016/j.crma.2004.12.014
%G en
%F CRMATH_2005__340_2_141_0
Neto, Orlando; Silva, Pedro C. The fundamental group of an algebraic link. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 141-146. doi : 10.1016/j.crma.2004.12.014. http://www.numdam.org/articles/10.1016/j.crma.2004.12.014/

[1] C. Ausina, Le groupe fondamental local d'une courbe sur une surface algébrique, Ph.D. Thesis, 2000

[2] Eisenbud, D.; Neumann, W. Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. Math. Stud., vol. 110, Princeton University Press, 1985

[3] Kashiwara, M. Quasi-unipotent constructible sheaves, J. Fac. Sci. Univ. Tokyo Sec. IA, Volume 28 (1982) no. 3, pp. 757-773

[4] Lê, D.T. Three Lectures on Local Monodromy, Lectures Notes Ser., vol. 54, Aarhus Universitet, 1974

[5] Lê, D.T. Plane curves singularities and carousels, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 4, pp. 1117-1139

[6] Neto, O. Microlocal Riemann–Hilbert correspondence, Compositio Math., Volume 127 (2001), pp. 229-241

[7] Silva, P.C. On a class of local systems associated to plane curves, C. R. Acad. Sci. Paris, Ser. I., Volume 335 (2002), pp. 421-426

[8] Zariski, O. On the topology of algebroid singularities, Amer. J. Math., Volume 54 (1932), pp. 453-465

Cited by Sources:

With the support of POCTI Program from Fundação para a Ciência e a Tecnologia and Acção Integrada Luso-Espanhola E-82/04 from Conselho de Reitores das Universidades Portuguesas.