Numerical Analysis
A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes
[Une méthode de volumes finis pour les équations de Maxwell en milieu inhomogène sur des maillages arbitraires.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 893-898.

On présente une nouvelle méthode d'approximation du type volumes finis pour les équations de Maxwell en milieu inhomogène. Cette méthode possède plusieurs avantages : (i) elle permet d'utiliser des maillages de polygones quelconques même très déformés ou non convexes ; (ii) elle préserve la loi de Gauss ; (iii) elle fournit un système differentiel explicite ; (iv) elle généralise la méthode des différences finies usuelle et les méthodes de volumes finis sur des maillages de Delaunay–Voronoi.

We present a new finite volume method for solving Maxwell equations in inhomogeneous media. This method has several advantages: (i) it allows even distorted or non-convex arbitrary polygonal meshes to be used; (ii) it preserves the Gauss law; (iii) it leads to an explicit differential system; (iv) it generalizes the standard finite difference method and the finite volume method on Delaunay–Voronoi meshes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.09.027
Hermeline, François 1

1 CEA/DIF, DSSI/SNEC, BP 12, 91680 Bruyères le Châtel, France
@article{CRMATH_2004__339_12_893_0,
     author = {Hermeline, Fran\c{c}ois},
     title = {A finite volume method for solving {Maxwell} equations in inhomogeneous media on arbitrary meshes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--898},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.09.027/}
}
TY  - JOUR
AU  - Hermeline, François
TI  - A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 893
EP  - 898
VL  - 339
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.09.027/
DO  - 10.1016/j.crma.2004.09.027
LA  - en
ID  - CRMATH_2004__339_12_893_0
ER  - 
%0 Journal Article
%A Hermeline, François
%T A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes
%J Comptes Rendus. Mathématique
%D 2004
%P 893-898
%V 339
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.09.027/
%R 10.1016/j.crma.2004.09.027
%G en
%F CRMATH_2004__339_12_893_0
Hermeline, François. A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes. Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 893-898. doi : 10.1016/j.crma.2004.09.027. http://www.numdam.org/articles/10.1016/j.crma.2004.09.027/

[1] Assous, F.; Degond, P.; Heintze, E.; Raviart, P.A.; Segre, J. On a finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., Volume 109 (1993), pp. 222-237

[2] Assous, F.; Degond, P.; Segre, J. Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method, J. Comput. Phys., Volume 128 (1996), pp. 363-380

[3] Bouchut, F. On the discrete conservation of the Gauss–Poisson equation of plasma physics, Commun. Numer. Methods Engrg., Volume 14 (1998), pp. 23-34

[4] Hermeline, F. Two coupled particle-finite volume methods using Delaunay–Voronoi meshes for the approximation of Vlasov–Poisson and Vlasov–Maxwell equations, J. Comput. Phys., Volume 106 (1993) no. 1, pp. 1-18

[5] Hermeline, F. Une méthode de volumes finis pour les équations elliptiques du second ordre, C. R. Acad. Sci. Paris, Ser. I, Volume 326 (1998), pp. 1433-1436

[6] Hermeline, F. A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., Volume 160 (2000), pp. 481-499

[7] Hermeline, F. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 1939-1959

[8] Marder, B. A method for incorporating Gauss' law into electromagnetic PIC codes, J. Comput. Phys., Volume 68 (1987), pp. 48-55

[9] Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas and Propag., Volume 14 (1966), pp. 302-307

Cité par Sources :