Mathematical Physics
Homogenization near resonances and artificial magnetism from dielectrics
Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 377-382.

The homogenization of periodic dielectric structures in harmonic regime usually leads to an effective permittivity tensor ɛeff. It has been observed by Bouchitté and Felbacq [Waves Random Media 7 (1997) 245–256], that in the high contrast case (high conductivity fibers), this tensor depends on the angular frequency ω. In this Note, we enlight a new effect induced by microscopic resonances which leads in parallel to a possibly negative effective permeability μeff(ω) (although the original medium is assumed to be nonmagnetic i.e. μ=1).

L'homogénéisation de structures diélectriques périodiques en régime harmonique fait apparaitre en général un tenseur de permittivité effective ɛeff. Il a été remarqué par Bouchitté et Felbacq [Waves Random Media 7 (1997) 245–256] que dans le cas de forts contrastes (fibres de grande conductivité), ce tenseur peut dépendre de la fréquence ω. Dans cette note, nous mettons en évidence un effet nouveau dû à des micro-résonances et qui conduit, malgré l'absence initiale de propriétés magnétiques (i.e. μ=1), à une perméabilité effective μeff(ω) qui peut éventuellement être négative.

Received:
Published online:
DOI: 10.1016/j.crma.2004.06.018
Bouchitté, Guy 1; Felbacq, Didier 2

1 Laboratoire ANAM, université de Toulon et du Var, BP 132, 83957 La Garde cedex, France
2 Groupe d'étude des semiconducteurs, université de Montpellier 2, place Eugène Bataillon, CC 074, 34095 Montpellier cedex 05, France
@article{CRMATH_2004__339_5_377_0,
     author = {Bouchitt\'e, Guy and Felbacq, Didier},
     title = {Homogenization near resonances and artificial magnetism from dielectrics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {377--382},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2004.06.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.06.018/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Felbacq, Didier
TI  - Homogenization near resonances and artificial magnetism from dielectrics
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 377
EP  - 382
VL  - 339
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.06.018/
DO  - 10.1016/j.crma.2004.06.018
LA  - en
ID  - CRMATH_2004__339_5_377_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Felbacq, Didier
%T Homogenization near resonances and artificial magnetism from dielectrics
%J Comptes Rendus. Mathématique
%D 2004
%P 377-382
%V 339
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.06.018/
%R 10.1016/j.crma.2004.06.018
%G en
%F CRMATH_2004__339_5_377_0
Bouchitté, Guy; Felbacq, Didier. Homogenization near resonances and artificial magnetism from dielectrics. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 377-382. doi : 10.1016/j.crma.2004.06.018. http://www.numdam.org/articles/10.1016/j.crma.2004.06.018/

[1] Acerbi, E.; Chiadò Piat, V.; Dal Maso, G.; Percivale, D. An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992) no. 5, pp. 481-496

[2] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518

[3] O'Brien, S.; Pendry, J.B. Photonic band-gaps effects and magnetic activity in dielectric composites, J. Phys. Condens. Mat., Volume 14 (2002), pp. 4035-4044

[4] Cessenat, M. Mathematical Methods in Electromagnetism. Linear Theory and Applications, Ser. Adv. Math. Appl. Sci., vol. 41, World Scientific, 1996

[5] Felbacq, D.; Bouchitté, G. Homogenization of a set of parallel fibers, Waves Random Media, Volume 7 (1997), pp. 245-256

[6] Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors, and enhanced non-linear phenomena, IEEE T. Microw. Theory, Volume 47 (1999), pp. 2075-2084

[7] Shelby, R.A.; Smith, D.R.; Nemat-Nasser, S.C.; Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., Volume 78 (2001), pp. 489-491

Cited by Sources: