Numerical Analysis
Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models
Comptes Rendus. Mathématique, Volume 338 (2004) no. 12, pp. 951-956.

In this Note, we present a scheme for nonlinear radiative systems which are compatible with diffusive asymptotics. The scheme is based on a splitting: firstly we use a relaxation step to change the problem into 2 identical systems of linear transport systems and, secondly, we use a so-called ‘well balanced’ scheme for each of the 2 systems. The main advantages of our scheme is that it is fully implicit and compatible with physical properties (positivity); it can be used with a nonconstant cross section and for nonuniform mesh.

Dans cette Note, nous présentons un schéma pour un modèle non linéaire de transfert radiatif, qui soit compatible avec la limite diffusion. Ce schéma est composé de deux étapes : une étape de relaxation qui transforme le système non linéaire en deux systèmes d'équation de transport linéaire identiques et un schéma «  équilibre  » pour chacun de ces systèmes. L'intérêt principal de notre schéma est d'être totalement implicite, de préserver les propriétés physiques (positivité) et d'être utilisable avec une section efficace variable et un maillage non uniforme.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.04.006
Buet, Christophe 1; Cordier, Stéphane 2

1 Département sciences de la simulation et de l'information, Commissariat à l'énergie atomique, BP 12, 91680 Bruyères le Chatel, France
2 UMR MAPMO, CNRS 6628, Université d'Orléans, BP 6759, 45067 Orléans, France
@article{CRMATH_2004__338_12_951_0,
     author = {Buet, Christophe and Cordier, St\'ephane},
     title = {Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {951--956},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.04.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.04.006/}
}
TY  - JOUR
AU  - Buet, Christophe
AU  - Cordier, Stéphane
TI  - Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 951
EP  - 956
VL  - 338
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.04.006/
DO  - 10.1016/j.crma.2004.04.006
LA  - en
ID  - CRMATH_2004__338_12_951_0
ER  - 
%0 Journal Article
%A Buet, Christophe
%A Cordier, Stéphane
%T Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models
%J Comptes Rendus. Mathématique
%D 2004
%P 951-956
%V 338
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.04.006/
%R 10.1016/j.crma.2004.04.006
%G en
%F CRMATH_2004__338_12_951_0
Buet, Christophe; Cordier, Stéphane. Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models. Comptes Rendus. Mathématique, Volume 338 (2004) no. 12, pp. 951-956. doi : 10.1016/j.crma.2004.04.006. http://www.numdam.org/articles/10.1016/j.crma.2004.04.006/

[1] C. Buet, S. Cordier, Asymptotic Preserving Scheme for radiative hydrodynamics model, 2004, in preparation

[2] Buet, C.; Desprès, B. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics http://hyke.org Preprint, HYKE2003-016 J. Quant. Spectrosc. Radiat. Transf. (2004), in press

[3] Buet, C.; Cordier, S.; Lucquin-Desreux, L.; Mancini, S. Diffusion limits of the Lorentz model: asymptotic preserving schemes, Methods Math. Anal. Numer., Volume 36 (2002) no. 4, pp. 631-655

[4] Gosse, L.; Toscani, G. An asymptotic preserving well-balanced scheme for the hyperbolic heat equation, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 4, pp. 337-342

[5] Jin, S.; Levermore, C.D. Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation, J. Comput. Phys., Volume 126 (1996), pp. 449-467

[6] Jin, S.; Xin, Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., Volume 48 (1995), pp. 235-276

[7] Levermore, C.D. Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf., Volume 31 (1984) no. 2, pp. 149-160

[8] Naldi, G.; Pareschi, L. Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1246-1270

Cited by Sources: