Algebra
Koszul duality for PROPs
Comptes Rendus. Mathématique, Volume 338 (2004) no. 12, pp. 909-914.

The notion of PROP models the operations with multiple inputs and multiple outputs, acting on some algebraic structures like the bialgebras or the Lie bialgebras. We prove a Koszul duality theory for PROPs generalizing the one for associative algebras and for operads.

La notion de PROP modélise les opérations à plusieurs entrées et plusieurs sorties, agissant sur certaines structures algébriques comme les bigèbres et les bigèbres de Lie. Nous montrons une théorie de dualité de Koszul pour les PROPs qui généralise celle des algèbres associatives et des opérades.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.04.004
Vallette, Bruno 1

1 Institut de recherche mathématique avancée, Université Louis Pasteur et CNRS, 7, rue René Descartes, 67084 Strasbourg cedex, France
@article{CRMATH_2004__338_12_909_0,
     author = {Vallette, Bruno},
     title = {Koszul duality for {PROPs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {909--914},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.04.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.04.004/}
}
TY  - JOUR
AU  - Vallette, Bruno
TI  - Koszul duality for PROPs
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 909
EP  - 914
VL  - 338
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.04.004/
DO  - 10.1016/j.crma.2004.04.004
LA  - en
ID  - CRMATH_2004__338_12_909_0
ER  - 
%0 Journal Article
%A Vallette, Bruno
%T Koszul duality for PROPs
%J Comptes Rendus. Mathématique
%D 2004
%P 909-914
%V 338
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.04.004/
%R 10.1016/j.crma.2004.04.004
%G en
%F CRMATH_2004__338_12_909_0
Vallette, Bruno. Koszul duality for PROPs. Comptes Rendus. Mathématique, Volume 338 (2004) no. 12, pp. 909-914. doi : 10.1016/j.crma.2004.04.004. http://www.numdam.org/articles/10.1016/j.crma.2004.04.004/

[1] Aguiar, M. Infinitesimal Hopf algebras, Contemp. Math., Volume 267 (2000), pp. 1-30

[2] Chas, M. Combinatorial Lie bialgebras of curves on surfaces (Preprint) | arXiv

[3] Drinfeld, V. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations, Soviet Math. Dokl., Volume 27 (1983) no. 1, pp. 68-71

[4] Fresse, B. Koszul duality of operads and homology of partition posets (Preprint) | arXiv

[5] Gan, W.L. Koszul duality for dioperads, Math. Res. Lett., Volume 10 (2003) no. 1, pp. 109-124

[6] Ginzburg, V.; Kapranov, M.M. Koszul duality for operads, Duke Math. J., Volume 76 (1995), pp. 203-272

[7] Kontsevich, M. Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173-187

[8] Loday, J.-L. La renaissance des opérades, Séminaire Bourbaki (Exp. No. 792), Astérisque, Volume 237 (1996), pp. 47-74

[9] Mac Lane, S. Categorical algebra, Bull. Amer. Math. Soc., Volume 71 (1965), pp. 40-106

[10] Markl, M.; Voronov, A.A. PROPped up graph cohomology (Preprint) | arXiv

[11] Priddy, S. Koszul resolutions, Trans. Amer. Math. Soc., Volume 152 (1970), pp. 39-60

[12] Serre, J.-P. Gèbres, Enseign. Math. (2), Volume 39 (1993) no. 1–2, pp. 33-85

[13] B. Vallette, Dualité de Koszul des PROPs, Ph.D. Thesis, Peprint IRMA, http://www-irma.u-strasbg.fr/irma/publications/2003/03030.shtml

Cited by Sources: