Partial Differential Equations/Mathematical Physics
From classical to semiclassical non-trapping behaviour
Comptes Rendus. Mathématique, Volume 338 (2004) no. 7, pp. 545-548.

For the semiclassical Schrödinger operator with smooth long-range potential, we prove in a new way, making use of semiclassical measures, that the boundary values of its resolvent at non-trapping energies are bounded by O(1/h), h being the semiclassical parameter.

Pour l'opérateur de Schrödinger semi-classique avec potentiel lisse à longue portée, on montre d'une manière nouvelle, au moyen de mesures semi-classiques, que les valeurs au bord de sa résolvante aux énergies non-captives sont de taille O(1/h), où h est le paramètre semi-classique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.01.022
Jecko, Thierry 1

1 IRMAR, Université de Rennes I, campus Beaulieu, 35042 Rennes cedex, France
@article{CRMATH_2004__338_7_545_0,
     author = {Jecko, Thierry},
     title = {From classical to semiclassical non-trapping behaviour},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--548},
     publisher = {Elsevier},
     volume = {338},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.01.022/}
}
TY  - JOUR
AU  - Jecko, Thierry
TI  - From classical to semiclassical non-trapping behaviour
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 545
EP  - 548
VL  - 338
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.01.022/
DO  - 10.1016/j.crma.2004.01.022
LA  - en
ID  - CRMATH_2004__338_7_545_0
ER  - 
%0 Journal Article
%A Jecko, Thierry
%T From classical to semiclassical non-trapping behaviour
%J Comptes Rendus. Mathématique
%D 2004
%P 545-548
%V 338
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.01.022/
%R 10.1016/j.crma.2004.01.022
%G en
%F CRMATH_2004__338_7_545_0
Jecko, Thierry. From classical to semiclassical non-trapping behaviour. Comptes Rendus. Mathématique, Volume 338 (2004) no. 7, pp. 545-548. doi : 10.1016/j.crma.2004.01.022. http://www.numdam.org/articles/10.1016/j.crma.2004.01.022/

[1] Burq, N. Semiclassical estimates for the resolvent in non trapping geometries, Int. Math. Res. Notices, Volume 5 (2002), pp. 221-241

[2] Cycon, H.L.; Froese, R.G.; Kirsch, W.; Simon, B. Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag, 1987

[3] Dereziński, J.; Gérard, C. Scattering Theory of Classical and Quantum N-Particle Systems, Springer-Verlag, 1997

[4] Gérard, P.; Leichtnam, E. Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2

[5] Gérard, C.; Martinez, A. Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris, Volume 306 (1988), pp. 121-123

[6] Robert, D. Autour de l'approximation semi-classique, Birkhäuser, 1987

[7] Robert, D.; Tamura, H. Semiclassical estimates for resolvents and asymptotics for total cross-section, Ann. Inst. H. Poincaré, Volume 46 (1987), pp. 415-442

[8] Vasy, A.; Zworski, M. Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys., Volume 212 (2000) no. 1, pp. 205-217

[9] Wang, X.P. Semiclassical resolvent estimates for N-body Schrödinger operators, J. Funct. Anal., Volume 97 (1991), pp. 466-483

Cited by Sources: