[L'inégalité de Kato lorsque Δu est une mesure]
We extend the classical version of Kato's inequality in order to allow functions u∈L1loc such that Δu is a Radon measure. This inequality has been recently applied by Brezis, Marcus, and Ponce to study the existence of solutions of the nonlinear equation −Δu+g(u)=μ, where μ is a measure and is a nondecreasing continuous function.
Nous étendons l'inégalité de Kato classique à des fonctions u∈L1loc telles que Δu est une mesure de Radon. Cette inégalité a été récemment utilisée par Brezis, Marcus et Ponce pour étudier l'existence de solutions de l'équation elliptique non linéaire −Δu+g(u)=μ, où μ est une mesure et est une fonction croissante et continue.
Accepté le :
Publié le :
Brezis, Haı̈m 1, 2 ; Ponce, Augusto C. 1, 2
@article{CRMATH_2004__338_8_599_0,
author = {Brezis, Ha{\i}\ensuremath{\ddot{}}m and Ponce, Augusto C.},
title = {Kato's inequality when {\ensuremath{\Delta}\protect\emph{u}} is a measure},
journal = {Comptes Rendus. Math\'ematique},
pages = {599--604},
year = {2004},
publisher = {Elsevier},
volume = {338},
number = {8},
doi = {10.1016/j.crma.2003.12.032},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2003.12.032/}
}
TY - JOUR AU - Brezis, Haı̈m AU - Ponce, Augusto C. TI - Kato's inequality when Δu is a measure JO - Comptes Rendus. Mathématique PY - 2004 SP - 599 EP - 604 VL - 338 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2003.12.032/ DO - 10.1016/j.crma.2003.12.032 LA - en ID - CRMATH_2004__338_8_599_0 ER -
%0 Journal Article %A Brezis, Haı̈m %A Ponce, Augusto C. %T Kato's inequality when Δu is a measure %J Comptes Rendus. Mathématique %D 2004 %P 599-604 %V 338 %N 8 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2003.12.032/ %R 10.1016/j.crma.2003.12.032 %G en %F CRMATH_2004__338_8_599_0
Brezis, Haı̈m; Ponce, Augusto C. Kato's inequality when Δu is a measure. Comptes Rendus. Mathématique, Tome 338 (2004) no. 8, pp. 599-604. doi: 10.1016/j.crma.2003.12.032
[1] Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique, Comm. Partial Differential Equations, Volume 4 (1979), pp. 321-337
[2] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 539-551
[3] Blow up for ut−Δu=g(u) revisited, Adv. Differential Equations, Volume 1 (1996), pp. 73-90
[4] Remarks on the strong maximum principle, Differential Integral Equations, Volume 16 (2003), pp. 1-12
[5] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation
[6] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), in press
[7] On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka Math. J., Volume 28 (1991), pp. 517-535
[8] Schrödinger operators with singular potentials, Israel J. Math., Volume 13 (1972), pp. 135-148
Cité par Sources :





