Algebra/Topology
The Chern–Galois character
Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 113-116.

Following the idea of Galois-type extensions and entwining structures, we define the notion of a principal extension of noncommutative algebras. We show that modules associated to such extensions via finite-dimensional corepresentations are finitely generated projective, and determine an explicit formula for the Chern character applied to the modules so obtained.

Nous nous inspirons des extensions de type Galois et des structures enlacées pour définir la notion d'extension principale d'algèbres non commutatives. Nous montrons que les modules associés à de telles extensions au travers de coreprésentations de dimension finie sont projectifs et de type fini, et nous déterminons une formule explicite pour le caractère de Chern appliqué aux modules ainsi obtenus.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.009
Brzeziński, Tomasz 1; Hajac, Piotr M. 2, 3

1 Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
2 Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, Warszawa, 00-956 Poland
3 Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski ul. Hoża 74, Warszawa, 00-682 Poland
@article{CRMATH_2004__338_2_113_0,
     author = {Brzezi\'nski, Tomasz and Hajac, Piotr M.},
     title = {The {Chern{\textendash}Galois} character},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {113--116},
     publisher = {Elsevier},
     volume = {338},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.009/}
}
TY  - JOUR
AU  - Brzeziński, Tomasz
AU  - Hajac, Piotr M.
TI  - The Chern–Galois character
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 113
EP  - 116
VL  - 338
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.009/
DO  - 10.1016/j.crma.2003.11.009
LA  - en
ID  - CRMATH_2004__338_2_113_0
ER  - 
%0 Journal Article
%A Brzeziński, Tomasz
%A Hajac, Piotr M.
%T The Chern–Galois character
%J Comptes Rendus. Mathématique
%D 2004
%P 113-116
%V 338
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.009/
%R 10.1016/j.crma.2003.11.009
%G en
%F CRMATH_2004__338_2_113_0
Brzeziński, Tomasz; Hajac, Piotr M. The Chern–Galois character. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 113-116. doi : 10.1016/j.crma.2003.11.009. http://www.numdam.org/articles/10.1016/j.crma.2003.11.009/

[1] F. Bonechi, L. Da̧browski, N. Ciccoli, M. Tarlini, Bijectivity of the canonical map for the noncommutative instanton bundle, J. Geom. Phys., in press

[2] Brzeziński, T. On modules associated to coalgebra Galois extensions, J. Algebra, Volume 215 (1999), pp. 290-317

[3] Brzeziński, T.; Hajac, P.M. Coalgebra extensions and algebra coextensions of Galois type, Comm. Algebra, Volume 27 (1999), pp. 1347-1367

[4] Brzeziński, T.; Majid, S. Coalgebra bundles, Comm. Math. Phys., Volume 191 (1998), pp. 467-492

[5] Cartan, H.; Eilenberg, S. Homological Algebra, Princeton University Press, Princeton, NJ, 1956

[6] Connes, A. Non-commutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360

[7] Cuntz, J.; Quillen, D. Algebra extensions and nonsingularity, J. Amer. Math. Soc., Volume 8 (1995), pp. 251-289

[8] Da̧browski, L.; Grosse, H.; Hajac, P.M. Strong connections and Chern–Connes pairing in the Hopf–Galois theory, Comm. Math. Phys., Volume 220 (2001), pp. 301-331

[9] Hajac, P.M.; Matthes, R.; Szymański, W. Chern numbers for two families of noncommutative Hopf fibrations, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 925-930

[10] Loday, J.-L. Cyclic Homology, Springer-Verlag, Berlin, 1998

[11] Müller, E.F.; Schneider, H.-J. Quantum homogeneous spaces with faithfully flat module structures, Israel J. Math., Volume 111 (1999), pp. 157-190

[12] P. Schauenburg, H.-J. Schneider, Galois-type extensions and Hopf algebras, in preparation

[13] Schneider, H.-J. Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math., Volume 72 (1990), pp. 167-195

Cited by Sources: