Differential Geometry
Homogeneous quaternionic Kähler structures of linear type
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 65-70.

A classification of homogeneous quaternionic Kähler structures by real tensors is given and related to Fino's representation theoretic decomposition. A relationship between the modules whose dimension grows linearly and quaternionic hyperbolic space is found.

Nous donnons une classification des structures kählériennes quaternioniennes homogènes en termes de tenseurs réels, ainsi qu'une rélation avec la décomposition donnée par Fino en utilisant la théorie des représentations. Nous donnons aussi une rélation entre les modules ayant dimension à croissance linéaire et l'espace hyperbolique quaternionien.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.10.035
Castrillón López, Marco 1; Gadea, Pedro M. 2; Swann, Andrew 3

1 Department of Geometry and Topology, Faculty of Mathematics, Avda. Complutense s/n, 28040 Madrid, Spain
2 Institute of Mathematics and Fundamental Physics, CSIC, Serrano 144, 28006, Madrid, Spain
3 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
@article{CRMATH_2004__338_1_65_0,
     author = {Castrill\'on~L\'opez, Marco and Gadea, Pedro M. and Swann, Andrew},
     title = {Homogeneous quaternionic {K\"ahler} structures of linear type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {65--70},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.10.035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.035/}
}
TY  - JOUR
AU  - Castrillón López, Marco
AU  - Gadea, Pedro M.
AU  - Swann, Andrew
TI  - Homogeneous quaternionic Kähler structures of linear type
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 65
EP  - 70
VL  - 338
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.10.035/
DO  - 10.1016/j.crma.2003.10.035
LA  - en
ID  - CRMATH_2004__338_1_65_0
ER  - 
%0 Journal Article
%A Castrillón López, Marco
%A Gadea, Pedro M.
%A Swann, Andrew
%T Homogeneous quaternionic Kähler structures of linear type
%J Comptes Rendus. Mathématique
%D 2004
%P 65-70
%V 338
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.10.035/
%R 10.1016/j.crma.2003.10.035
%G en
%F CRMATH_2004__338_1_65_0
Castrillón López, Marco; Gadea, Pedro M.; Swann, Andrew. Homogeneous quaternionic Kähler structures of linear type. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 65-70. doi : 10.1016/j.crma.2003.10.035. http://www.numdam.org/articles/10.1016/j.crma.2003.10.035/

[1] Alekseevskii, D.V. Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl., Volume 2 (1968), pp. 97-105

[2] Ambrose, W.; Singer, I.M. On homogeneous Riemannian manifolds, Duke Math. J., Volume 25 (1958), pp. 647-669

[3] Berger, M. Remarques sur le groupe d'holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris Sér. I Math., Volume 262 (1966), pp. 1316-1318

[4] Besse, A. Einstein Manifolds, Springer, Berlin-Heidelberg, 1987

[5] Fino, A. Intrinsic torsion and weak holonomy, Math. J. Toyama Univ., Volume 21 (1998), pp. 1-22

[6] Gadea, P.M.; Oubiña, J.A. Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math., Volume 189 (1997), pp. 17-34

[7] Gadea, P.M.; Montesinos Amilibia, A.; Muñoz Masqué, J. Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 87-94

[8] Gray, A.; Hervella, L.M. The sixteen classes of almost-Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., Volume 123 (1980) no. 4, pp. 35-58

[9] Ishihara, S. Quaternion Kählerian manifolds, J. Differential Geom., Volume 9 (1974), pp. 483-500

[10] Kiričenko, V.F. On homogeneous Riemannian spaces with invariant tensor structures, Soviet Math. Dokl., Volume 21 (1980), pp. 734-737

[11] Tricerri, F.; Vanhecke, L. Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note, vol. 83, Cambridge Univ. Press, Cambridge, UK, 1983

Cited by Sources: