@article{ASENS_2006_4_39_3_467_0, author = {G\"ortz, Ulrich and Haines, Thomas J. and Kottwitz, Robert E. and Reuman, Daniel C.}, title = {Dimensions of some affine {Deligne-Lusztig} varieties}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {467--511}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {3}, year = {2006}, doi = {10.1016/j.ansens.2005.12.004}, zbl = {1108.14035}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2005.12.004/} }
TY - JOUR AU - Görtz, Ulrich AU - Haines, Thomas J. AU - Kottwitz, Robert E. AU - Reuman, Daniel C. TI - Dimensions of some affine Deligne-Lusztig varieties JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 467 EP - 511 VL - 39 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2005.12.004/ DO - 10.1016/j.ansens.2005.12.004 LA - en ID - ASENS_2006_4_39_3_467_0 ER -
%0 Journal Article %A Görtz, Ulrich %A Haines, Thomas J. %A Kottwitz, Robert E. %A Reuman, Daniel C. %T Dimensions of some affine Deligne-Lusztig varieties %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 467-511 %V 39 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2005.12.004/ %R 10.1016/j.ansens.2005.12.004 %G en %F ASENS_2006_4_39_3_467_0
Görtz, Ulrich; Haines, Thomas J.; Kottwitz, Robert E.; Reuman, Daniel C. Dimensions of some affine Deligne-Lusztig varieties. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 39 (2006) no. 3, pp. 467-511. doi : 10.1016/j.ansens.2005.12.004. http://www.numdam.org/articles/10.1016/j.ansens.2005.12.004/
[1] Groupes réductifs sur un corps local. I, Inst. Hautes Études Sci. Publ. Math. 41 (1972) 5-251. | EuDML | Numdam | MR | Zbl
, ,[2] Machine calculations in Weyl groups, Invent. Math. 116 (1994) 95-108. | EuDML | MR | Zbl
,[3] Newton polygons as lattice points, Amer. J. Math. 122 (5) (2000) 967-990. | MR | Zbl
,[4] Comparison of the Bruhat and the Iwahori decompositions of a -adic Chevalley group, J. Algebra 167 (3) (1994) 704-723. | MR | Zbl
,[5] La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math. 52 (1980). | EuDML | Numdam | MR | Zbl
,[6] Groupes Algébriques: Tome I. Géométrie algébrique-Généralités-Groupes commutatifs, Masson and CIE, Paris, 1970, 700 pp.+xxvi. | Zbl
, ,[7] Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique . VII, Math. Ann. 134 (1957) 114-133. | EuDML | MR | Zbl
,[8] Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, Astérisque 291 (2004). | Numdam | Zbl
, ,[9] On matrix coefficients of the Satake isomorphism: complements to the paper of Rapoport, Manuscripta Math. 101 (2000) 167-174. | MR | Zbl
,[10] Iwahori-Hecke algebras, math.RT/0309168.
, , ,[11] Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math. 66 (1982) 461-468. | MR | Zbl
,[12] Dimensions of Newton strata in the adjoint quotient of reductive groups, Pure Appl. Math. Q., in press, math.AG/0601196. | MR | Zbl
,[13] Isocrystals with additional structure, Compositio Math. 56 (1985) 201-220. | Numdam | MR | Zbl
,[14] Isocrystals with additional structure. II, Compositio Math. 109 (1997) 255-339. | MR | Zbl
,[15] On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not. 26 (2003) 1433-1447. | MR | Zbl
,[16] On the existence of F-crystals, Comment. Math. Helv. 78 (2003) 153-184, math.NT/0202229. | MR | Zbl
, ,[17] A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu 3 (2) (2004) 165-183, math.NT/0211327. | MR | Zbl
,[18] Singularities, character formulas, and a q-analog of weight multiplicities, in: Analyse et topologie sur les espaces singuliers, I-II, (Luminy, 1981), Soc. Math. France, Paris, 1983, pp. 208-229. | Numdam | MR | Zbl
,[19] Theory of commutative formal groups over fields of finite characteristic, Uspekhi Mat. Nauk 18 (6 (114)) (1963) 3-90, (in Russian); English translation in:, Russian Math. Surveys 18 (6) (1963) 1-83. | MR | Zbl
,[20] On the cohomology of certain PEL type Shimura varieties, Duke Math. J. 129 (3) (2005) 573-610. | MR | Zbl
,[21] Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Springer Lecture Notes, vol. 590, Springer, Berlin, 1977. | MR | Zbl
,[22] Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222v2.
, ,[23] Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (1) (2000) 13-24. | MR | Zbl
, ,[24] The Red Book of Varieties and Schemes, Lecture Notes in Math., vol. 1358, Springer, Berlin, 1988. | MR | Zbl
,[25] Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom. 10 (3) (2001) 515-547. | MR | Zbl
, ,[26] Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2) (2004) 267-296. | MR | Zbl
,[27] A positivity property of the Satake isomorphism, Manuscripta Math. 101 (2000) 153-166. | MR | Zbl
,[28] A guide to the reduction modulo p of Shimura varieties, Astérisque 298 (2005) 271-318, math.AG/0205022. | Numdam | MR | Zbl
,[29] On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996) 153-181. | Numdam | MR | Zbl
, ,[30] Period Spaces for p-Divisible Groups, Ann. of Math. Stud., vol. 141, Princeton University Press, Princeton, NJ, 1996. | MR | Zbl
, ,[31] Determining whether certain affine Deligne-Lusztig sets are non-empty, Thesis, Chicago, 2002, math.NT/0211434.
,[32] Formulas for the dimensions of some affine Deligne-Lusztig varieties, Michigan Math. J. 52 (2) (2004) 435-451. | MR | Zbl
,[33] Moduli spaces of p-divisible groups, math.AG/0502320.
,[34] The dimension of some affine Deligne-Lusztig varieties, Annales Sci. de l'E.N.S. 39 (3) (2006), math.AG/0510385. | Numdam | MR | Zbl
,Cited by Sources: