Minnaert resonances for acoustic waves in bubbly media
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1975-1998.

Through the application of layer potential techniques and Gohberg–Sigal theory we derive an original formula for the Minnaert resonance frequencies of arbitrarily shaped bubbles. We also provide a mathematical justification for the monopole approximation of scattering of acoustic waves by bubbles at their Minnaert resonant frequency. Our results are complemented by several numerical examples which serve to validate our formula in two dimensions.

DOI : 10.1016/j.anihpc.2018.03.007
Classification : 35R30, 35C20
Mots clés : Minnaert resonance, Bubble, Monopole approximation, Layer potentials, Acoustic waves
@article{AIHPC_2018__35_7_1975_0,
     author = {Ammari, Habib and Fitzpatrick, Brian and Gontier, David and Lee, Hyundae and Zhang, Hai},
     title = {Minnaert resonances for acoustic waves in bubbly media},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1975--1998},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.007},
     mrnumber = {3906861},
     zbl = {1400.35230},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.007/}
}
TY  - JOUR
AU  - Ammari, Habib
AU  - Fitzpatrick, Brian
AU  - Gontier, David
AU  - Lee, Hyundae
AU  - Zhang, Hai
TI  - Minnaert resonances for acoustic waves in bubbly media
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1975
EP  - 1998
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.007/
DO  - 10.1016/j.anihpc.2018.03.007
LA  - en
ID  - AIHPC_2018__35_7_1975_0
ER  - 
%0 Journal Article
%A Ammari, Habib
%A Fitzpatrick, Brian
%A Gontier, David
%A Lee, Hyundae
%A Zhang, Hai
%T Minnaert resonances for acoustic waves in bubbly media
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1975-1998
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.007/
%R 10.1016/j.anihpc.2018.03.007
%G en
%F AIHPC_2018__35_7_1975_0
Ammari, Habib; Fitzpatrick, Brian; Gontier, David; Lee, Hyundae; Zhang, Hai. Minnaert resonances for acoustic waves in bubbly media. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1975-1998. doi : 10.1016/j.anihpc.2018.03.007. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.007/

[1] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, G. Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2012), pp. 667–692 | MR | Zbl

[2] Ammari, H.; Deng, Y.; Millien, P. Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal., Volume 220 (2016), pp. 109–153 | DOI | MR | Zbl

[3] Ammari, H.; Fitzpatrick, B.; Gontier, D.; Lee, H.; Zhang, H. A mathematical and numerical framework for bubble meta-screens, SIAM J. Appl. Math., Volume 77 (2017) no. 5, pp. 1827–1850 | DOI | MR | Zbl

[4] Ammari, H.; Millien, P.; Ruiz, M.; Zhang, H. Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 597–658 | DOI | MR | Zbl

[5] Ammari, H.; Ruiz, M.; Yu, S.; Zhang, H. Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell equations, J. Differ. Equ., Volume 261 (2016) no. 6, pp. 3615–3669 | DOI | MR | Zbl

[6] Ammari, H.; Kang, H. Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, vol. 162, Springer-Verlag, New York, 2007 | MR | Zbl

[7] Ammari, H.; Kang, H. Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl., Volume 296 (2004), pp. 190–208 | DOI | MR | Zbl

[8] Ammari, H.; Kang, H.; Lee, H. Layer Potential Techniques in Spectral Analysis, Mathematical Surveys and Monographs, vol. 153, Amer. Math. Soc., Rhode Island, 2009 | MR | Zbl

[9] Ammari, H.; Zhang, H. A mathematical theory of super-resolution by using a system of sub-wavelength Helmholtz resonators, Commun. Math. Phys., Volume 337 (2015), pp. 379–428 | DOI | MR | Zbl

[10] Ammari, H.; Zhang, H. Super-resolution in high contrast media, Proc. Royal Soc. A, Volume 471 (2015) | MR | Zbl

[11] Ammari, H.; Zhang, H. Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant frequency, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3252–3276 | DOI | MR | Zbl

[12] Ando, K.; Kang, H. Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincaré operator, J. Math. Anal. Appl., Volume 435 (2016), pp. 162–178 | DOI | MR | Zbl

[13] Ando, K.; Kang, H.; Liu, H. Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math., Volume 76 (2016), pp. 731–749 | DOI | MR | Zbl

[14] Caflish, R.E.; Miksis, M.J.; Papanicolaou, G.C.; Ting, L. Effective equations for wave propagation in bubbly liquids, J. Fluid Mech., Volume 153 (1985), pp. 259–273 | Zbl

[15] Caflish, R.E.; Miksis, M.J.; Papanicolaou, G.C.; Ting, L. Wave propagation in bubbly liquids at finite volume fraction, J. Fluid Mech., Volume 160 (1985), pp. 1–14 | Zbl

[16] Calvo, D.C.; Thangawng, A.L.; Layman, C.N. Low-frequency resonance of an oblate spheroidal cavity in a soft elastic medium, J. Acoust. Soc. Am., Volume 132 (2012), pp. EL1–EL7 | DOI

[17] Cheng, H.; Crutchfield, W.Y.; Doery, M.; Greengard, L. Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: theory, Opt. Express, Volume 12 (2004) no. 16, pp. 3791–3805 | DOI

[18] Commander, K.W.; Prosperetti, A. Linear pressure waves in bubbly liquids: comparison between theory and experiments, J. Acoust. Soc. Am., Volume 85 (1989), pp. 732–746 | DOI

[19] Devaud, M.; Hocquet, T.; Bacri, J.C.; Leroy, V. The Minnaert bubble: an acoustic approach, Eur. J. Phys., Volume 29 (2008) no. 6, pp. 1263 | DOI | Zbl

[20] Errico, C.; Pierre, J.; Pezet, S.; Desailly, Y.; Lenkei, Z.; Couture, O.; Tanter, M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging, Nature, Volume 527 (2015), pp. 499–502 | DOI

[21] Feuillade, C. Scattering from collective modes of air bubbles in water and the physical mechanism of superresonances, J. Acoust. Soc. Am., Volume 98 (1995) no. 2, pp. 1178–1190 | DOI

[22] Foldy, L.L. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., Volume 67 (1945), pp. 107 | DOI | MR | Zbl

[23] Galstyan, V.; Pak, O.S.; Stone, H.A. A note on the breathing mode of an elastic sphere in Newtonian and complex fluids, Phys. Fluids, Volume 27 (2015) | DOI

[24] Hwang, P.A.; Teague, W.J. Low-frequency resonant scattering of bubble clouds, J. Atmos. Ocean. Technol., Volume 17 (2000), pp. 847–853 | DOI

[25] Kang, H.; Kim, K.; Lee, H.; Shin, J. Spectral properties of the Neumann–Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc., Volume 93 (2016), pp. 519–546 | DOI | MR | Zbl

[26] Kargl, S.G. Effective medium approach to linear acoustics in bubbly liquids, J. Acoust. Soc. Am., Volume 111 (2002), pp. 168–173 | DOI

[27] Khismatullin, D.B. Resonance frequency of microbubbles: effect of viscosity, J. Acoust. Soc. Am., Volume 116 (2004), pp. 1463–1473 | DOI

[28] Lanoy, M.; Pierrat, R.; Lemoult, F.; Fink, M.; Leroy, V.; Tourin, A. Subwavelength focusing in bubbly media using broadband time reversal, Phys. Rev. B, Volume 91 (2015) no. 22 | DOI

[29] Lekner, J. Capacitance coefficients of two spheres, J. Electrost., Volume 69 (2011), pp. 11–14 | DOI

[30] Leroy, V.; Bretagne, A.; Fink, M.; Tourin, A.; Willaime, H.; Tabeling, P. Design and characterization of bubble phononic crystals, Appl. Phys. Lett., Volume 95.17 (2009)

[31] Leroy, V.; Devaud, M.; Bacri, J.C. The air bubble: experiments on an usual harmonic oscillator, Am. J. Phys., Volume 10 (2002), pp. 1012–1019

[32] Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J.H. Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B, Volume 91 (2015) no. 2 | DOI

[33] Leroy, V.; Strybulevych, A.; Scanlon, M.G.; Page, J.H. Transmission of ultrasound through a single layer of bubbles, Eur. Phys. J. E, Volume 29 (2009) no. 1, pp. 123–130 | DOI

[34] Minnaert, M. On musical air-bubbles and the sounds of running water, London, Edinburgh, Dublin Philos. Mag. and J. Sci., Volume 16 (1933), pp. 235–248

[35] Verchota, G. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipchitz domains, J. Funct. Anal., Volume 59 (1984), pp. 572–611 | DOI | MR | Zbl

[36] Yu, S.; Ammari, H. Plasmonic interaction between nanospheres, SIAM Rev., Volume 60 (2018) no. 2 (in press) | arXiv | MR | Zbl

Cité par Sources :