On the dual formulation of obstacle problems for the total variation and the area functional
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1175-1207.

We investigate the Dirichlet minimization problem for the total variation and the area functional with a one-sided obstacle. Relying on techniques of convex analysis, we identify certain dual maximization problems for bounded divergence-measure fields, and we establish duality formulas and pointwise relations between (generalized) BV minimizers and dual maximizers. As a particular case, these considerations yield a full characterization of BV minimizers in terms of Euler equations with a measure datum. Notably, our results apply to very general obstacles such as BV obstacles, thin obstacles, and boundary obstacles, and they include information on exceptional sets and up to the boundary. As a side benefit, in some cases we also obtain assertions on the limit behavior of p-Laplace type obstacle problems for p1.

On the technical side, the statements and proofs of our results crucially depend on new versions of Anzellotti type pairings which involve general divergence-measure fields and specific representatives of BV functions. In addition, in the proofs we employ several fine results on (BV) capacities and one-sided approximation.

DOI : 10.1016/j.anihpc.2017.10.003
Mots clés : (Thin) obstacle problem, Total variation, Convex duality, Optimality conditions, Anzellotti pairing, BV capacity
@article{AIHPC_2018__35_5_1175_0,
     author = {Scheven, Christoph and Schmidt, Thomas},
     title = {On the dual formulation of obstacle problems for the total variation and the area functional},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1175--1207},
     publisher = {Elsevier},
     volume = {35},
     number = {5},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.10.003},
     mrnumber = {3813962},
     zbl = {1401.35112},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.003/}
}
TY  - JOUR
AU  - Scheven, Christoph
AU  - Schmidt, Thomas
TI  - On the dual formulation of obstacle problems for the total variation and the area functional
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1175
EP  - 1207
VL  - 35
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.003/
DO  - 10.1016/j.anihpc.2017.10.003
LA  - en
ID  - AIHPC_2018__35_5_1175_0
ER  - 
%0 Journal Article
%A Scheven, Christoph
%A Schmidt, Thomas
%T On the dual formulation of obstacle problems for the total variation and the area functional
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1175-1207
%V 35
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.003/
%R 10.1016/j.anihpc.2017.10.003
%G en
%F AIHPC_2018__35_5_1175_0
Scheven, Christoph; Schmidt, Thomas. On the dual formulation of obstacle problems for the total variation and the area functional. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1175-1207. doi : 10.1016/j.anihpc.2017.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.003/

[1] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications. Clarendon Press, Oxford, 2000 | DOI | MR | Zbl

[2] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M. Minimizing total variation flow, C. R. Math. Acad. Sci. Paris, Volume 331 (2000) no. 11, pp. 867–872 | MR | Zbl

[3] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M. The Dirichlet problem for the total variation flow, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 347–403 | DOI | MR | Zbl

[4] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M. Minimizing total variation flow, Differ. Integral Equ., Volume 14 (2001) no. 3, pp. 321–360 | MR | Zbl

[5] Andreu, F.; Caselles, V.; Diaz, J.I.; Mazón, J.M. Some qualitative properties for the total variation flow, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 516–547 | DOI | MR | Zbl

[6] Anzellotti, G. Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., Volume 135 (1984) no. 4, pp. 293–318 | MR | Zbl

[7] Anzellotti, G. The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., Volume 290 (1985) no. 2, pp. 483–501 | DOI | MR | Zbl

[8] Anzellotti, G. On the minima of functionals with linear growth, Rend. Semin. Mat. Univ. Padova, Volume 75 (1986), pp. 91–110 | Numdam | MR | Zbl

[9] Attouch, H.; Picard, C. Problèmes variationnels et théorie du potentiel non linèaire, Ann. Fac. Sci. Toulouse Math. (5), Volume 1 (1979) no. 2, pp. 89–136 | DOI | Numdam | MR | Zbl

[10] Beck, L.; Schmidt, T. Convex duality and uniqueness for BV-minimizers, J. Funct. Anal., Volume 268 (2015) no. 10, pp. 3061–3107 | DOI | MR | Zbl

[11] Bellettini, G.; Caselles, V.; Novaga, M. The total variation flow in RN , J. Differ. Equ., Volume 184 (2002) no. 2, pp. 475–525 | DOI | MR | Zbl

[12] Bellettini, G.; Caselles, V.; Novaga, M. Explicit solutions of the eigenvalue problem div(Du|Du|)=u in R2 , SIAM J. Math. Anal., Volume 36 (2005) no. 4, pp. 1095–1129 | DOI | MR | Zbl

[13] Bildhauer, M.; Fuchs, M. Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth, J. Math. Sci. (N.Y.), Volume 109 (2002) no. 5, pp. 1835–1850 (translation from Zap. Nauč. Semin. POMI, 259, 1999, 46–66) | DOI | MR | Zbl

[14] Bögelein, V.; Duzaar, F.; Scheven, C. The obstacle problem for the total variation flow, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 5, pp. 1139–1184 | MR | Zbl

[15] Carriero, M.; Dal Maso, G.; Leaci, A.; Pascali, E. Relaxation of the non-parametric Plateau problem with an obstacle, J. Math. Pures Appl. (9), Volume 67 (1988) no. 4, pp. 359–396 | MR | Zbl

[16] Chen, G.-Q.; Frid, H. Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., Volume 147 (1999) no. 2, pp. 89–118 | MR | Zbl

[17] Colombini, F. Una definizione alternativa per una misura usato nello studio di ipersuperfici minimali, Boll. Unione Mat. Ital. (4), Volume 8 (1973), pp. 159–173 | MR | Zbl

[18] Dal Maso, G. On the integral representation of certain local functionals, Ric. Mat., Volume 32 (1983) no. 1, pp. 85–113 | MR | Zbl

[19] De Giorgi, E. Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. Unione Mat. Ital. (4), Volume 8 (1973) no. 2, pp. 80–88 | MR | Zbl

[20] De Giorgi, E.; Colombini, F.; Piccinini, L. Frontiere orientate di misura minima e questioni collegate, Quaderno della Scuola Normale Superiore di Pisa, Pisa, 1972 | MR | Zbl

[21] Demengel, F. On some nonlinear partial differential equations involving the “1” -Laplacian and critical Sobolev exponent, ESAIM Control Optim. Calc. Var., Volume 4 (1999), pp. 667–686 | DOI | Numdam | MR | Zbl

[22] Demengel, F. Functions locally almost 1-harmonic, Appl. Anal., Volume 83 (2004) no. 9, pp. 865–896 | DOI | MR | Zbl

[23] Federer, H.; Ziemer, W.P. The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., Volume 22 (1973) no. 2, pp. 139–158 | DOI | MR | Zbl

[24] Giaquinta, M.; Pepe, L. Esistenza e regolarita per il problema dell'area minima con ostacoli in n variabili, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., Volume 25 (1971), pp. 481–507 | Numdam | MR | Zbl

[25] Giusti, E. Superfici minime cartesiane con ostacoli discontinui, Arch. Ration. Mech. Anal., Volume 40 (1971), pp. 251–267 | DOI | MR | Zbl

[26] Giusti, E. Non-parametric minimal surfaces with discontinuous and thin obstacles, Arch. Ration. Mech. Anal., Volume 49 (1972), pp. 41–56 | DOI | MR | Zbl

[27] Heinonen, J.; Kilpeläinen, T.; Martio, O. Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Mineola, NY, 2006 | MR | Zbl

[28] Hutchinson, J. On the relationship between Hausdorff measure and a measure of De Giorgi, Colombini and Piccinini, Boll. Unione Mat. Ital., B (5), Volume 18 (1981) no. 2, pp. 619–628 | MR | Zbl

[29] Kohn, R.V.; Temam, R. Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim., Volume 10 (1983) no. 1, pp. 1–35 | MR | Zbl

[30] Malý, J.; Ziemer, W.P. Fine Regularity of Solutions of Elliptic Partial Differential Equations, Math. Surv. Monogr., vol. 51, American Mathematical Society, Providence (RI), 1997 | DOI | MR | Zbl

[31] Mercaldo, A.; Segura de León, S.; Trombetti, C. On the behaviour of the solutions to p-Laplacian equations as p goes to 1, Publ. Mat., Volume 52 (2008) no. 2, pp. 377–411 | MR | Zbl

[32] Mercaldo, A.; Segura de León, S.; Trombetti, C. On the solutions to 1-Laplace equation with L1 data, J. Funct. Anal., Volume 256 (2009) no. 8, pp. 2387–2416 | DOI | MR | Zbl

[33] Moll, J.S. The anisotropic total variation flow, Math. Ann., Volume 332 (2005) no. 1, pp. 177–218 | MR | Zbl

[34] Scheven, C.; Schmidt, T. An Anzellotti type pairing for divergence-measure fields and a notion of weakly super-1-harmonic functions, 2015 (Preprint) | arXiv

[35] Scheven, C.; Schmidt, T. BV supersolutions to equations of 1-Laplace and minimal surface type, J. Differ. Equ., Volume 261 (2016), pp. 1904–1932 | DOI | MR | Zbl

[36] Schmidt, T. Strict interior approximation of sets of finite perimeter and functions of bounded variation, Proc. Am. Math. Soc., Volume 143 (2015) no. 5, pp. 2069–2084 | DOI | MR | Zbl

[37] Ziemer, W.P.; Zumbrun, K. The obstacle problem for functions of least gradient, Math. Bohem., Volume 124 (1999) no. 2–3, pp. 193–219 | MR | Zbl

Cité par Sources :