Partial data inverse problems for Maxwell equations via Carleman estimates
Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 3, pp. 605-624.

In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim–Uhlmann and Kenig–Sjöstrand–Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.

Dans cet article nous considérons un problème inverse aux limites pour les équations de Maxwell harmoniques en temps. Nous montrons que les paramètres électromagnétiques sont déterminés par des mesures sur un très petit sous-ensemble du bord. Ces résultats pour le système de Maxwell sont une extension des résultats scalaires de Bukhgeim–Uhlmann et Kenig–Sjöstrand–Uhlmann. La contribution principale est de montrer que les méthodes d'estimations de Carleman de ces articles peuvent être généralisées au système de Maxwell.

DOI: 10.1016/j.anihpc.2017.06.005
Classification: 35R30
Keywords: Inverse problems, Maxwell equations, Partial data, Admissible manifolds, Carleman estimates
@article{AIHPC_2018__35_3_605_0,
     author = {Chung, Francis J. and Ola, Petri and Salo, Mikko and Tzou, Leo},
     title = {Partial data inverse problems for {Maxwell} equations via {Carleman} estimates},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {605--624},
     publisher = {Elsevier},
     volume = {35},
     number = {3},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.06.005},
     mrnumber = {3778644},
     zbl = {1458.35473},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.005/}
}
TY  - JOUR
AU  - Chung, Francis J.
AU  - Ola, Petri
AU  - Salo, Mikko
AU  - Tzou, Leo
TI  - Partial data inverse problems for Maxwell equations via Carleman estimates
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 605
EP  - 624
VL  - 35
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.005/
DO  - 10.1016/j.anihpc.2017.06.005
LA  - en
ID  - AIHPC_2018__35_3_605_0
ER  - 
%0 Journal Article
%A Chung, Francis J.
%A Ola, Petri
%A Salo, Mikko
%A Tzou, Leo
%T Partial data inverse problems for Maxwell equations via Carleman estimates
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 605-624
%V 35
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.005/
%R 10.1016/j.anihpc.2017.06.005
%G en
%F AIHPC_2018__35_3_605_0
Chung, Francis J.; Ola, Petri; Salo, Mikko; Tzou, Leo. Partial data inverse problems for Maxwell equations via Carleman estimates. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 3, pp. 605-624. doi : 10.1016/j.anihpc.2017.06.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.005/

[1] Angulo-Ardoy, P.; Faraco, D.; Guijarro, L.; Ruiz, A. Obstructions to the existence of limiting Carleman weights, Anal. PDE, Volume 9 (2016), pp. 575–595 | DOI | MR | Zbl

[2] Assylbekov, Y.M. Partial data inverse problems for the time-harmonic Maxwell equations | arXiv

[3] Brown, M.; Marletta, M.; Reyes, J.M. Uniqueness for an inverse problem in electromagnetism with partial data, J. Differ. Equ., Volume 8 (2016), pp. 6525–6547 | MR | Zbl

[4] Bukhgeim, A.L.; Uhlmann, G. Recovering a potential from partial Cauchy data, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 653–668 | DOI | MR | Zbl

[5] Calderón, A.P. On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980 | MR

[6] Caro, P. Stable determination of the electromagnetic coefficients by boundary measurements, Inverse Probl., Volume 26 (2010) | DOI | MR | Zbl

[7] Caro, P. On an inverse problem in electromagnetism with local data: stability and uniqueness, Inverse Probl. Imaging, Volume 5 (2011), pp. 297–322 | MR | Zbl

[8] Caro, P.; Ola, P.; Salo, M. Inverse boundary value problem for Maxwell equations with local data, Commun. Partial Differ. Equ., Volume 34 (2009), pp. 1425–1464 | DOI | MR | Zbl

[9] Caro, P.; Zhou, T. On global uniqueness for an IBVP for the time-harmonic Maxwell equations, Anal. PDE, Volume 7 (2014), pp. 375–405 | DOI | MR | Zbl

[10] Chung, F.; Salo, M.; Tzou, L. Partial data inverse problems for the Hodge Laplacian, Anal. PDE, Volume 10 (2017), pp. 43–93 | DOI | MR | Zbl

[11] Colton, D.; Päivärinta, L. The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Ration. Mech. Anal., Volume 119 (1992), pp. 59–70 | DOI | MR | Zbl

[12] Dos Santos Ferreira, D.; Kenig, C.E.; Salo, M.; Uhlmann, G. Limiting Carleman weights and anisotropic inverse problems, Invent. Math., Volume 178 (2009), pp. 119–171 | DOI | MR | Zbl

[13] Dos Santos Ferreira, D.; Kurylev, Y.; Lassas, M.; Salo, M. The Calderón problem in transversally anisotropic geometries, J. Eur. Math. Soc., Volume 18 (2016), pp. 2579–2626 | DOI | MR | Zbl

[14] Eller, M. Carleman estimates for some elliptic systems, J. Phys. Conf. Ser., Volume 124 (2008) | DOI

[15] Imanuvilov, O.; Uhlmann, G.; Yamamoto, M. The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., Volume 23 (2010), pp. 655–691 | DOI | MR | Zbl

[16] Imanuvilov, O.; Yamamoto, M. Inverse boundary value problem for Schrödinger equation in cylindrical domain by partial boundary data, Inverse Probl., Volume 29 (2013) | DOI | MR | Zbl

[17] Imanuvilov, O.; Yamamoto, M. Calderón problem for Maxwell's equations in cylindrical domain, Inverse Probl. Imaging, Volume 8 (2014), pp. 1117–1137 | MR | Zbl

[18] Imanuvilov, O.; Yamamoto, M. Calderón problem for Maxwell's equations in two dimensions, J. Inverse Ill-Posed Probl., Volume 24 (2015), pp. 351–355 | MR

[19] Imanuvilov, O.; Yamamoto, M. Calderón problem for Maxwell's equations in the wave guide, Contemp. Math., Volume 640 (2015), pp. 137–168 | DOI | MR | Zbl

[20] Isakov, V. On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, Volume 1 (2007), pp. 95–105 | MR | Zbl

[21] Joshi, M.; McDowall, S.R. Total determination of material parameters from electromagnetic boundary information, Pac. J. Math., Volume 193 (2000), pp. 107–129 | DOI | MR | Zbl

[22] Kenig, C.E.; Salo, M. The Calderón problem with partial data on manifolds and applications, Anal. PDE, Volume 6 (2013), pp. 2003–2048 | DOI | MR | Zbl

[23] Kenig, C.E.; Salo, M.; Uhlmann, G. Inverse problems for the anisotropic Maxwell equations, Duke Math. J., Volume 157 (2011), pp. 369–419 | DOI | MR | Zbl

[24] Kenig, C.E.; Sjöstrand, J.; Uhlmann, G. The Calderón problem with partial data, Ann. Math., Volume 165 (2007), pp. 567–591 | DOI | MR | Zbl

[25] McDowall, S.R. Boundary determination of material parameters from electromagnetic boundary information, Inverse Probl., Volume 13 (1997), pp. 153–163 | DOI | MR | Zbl

[26] McDowall, S.R. An electromagnetic inverse problem in chiral media, Trans. Am. Math. Soc., Volume 352 (2000), pp. 2993–3013 | DOI | MR | Zbl

[27] Ola, P.; Päivärinta, L.; Somersalo, E. An inverse boundary value problem in electrodynamics, Duke Math. J., Volume 70 (1993), pp. 617–653 | MR | Zbl

[28] Ola, P.; Päivärinta, L.; Somersalo, E.; Uhlmann, G. Inverse problems for time harmonic electrodynamics, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., vol. 47, Cambridge University Press, Cambridge, 2003, pp. 169–191 | MR | Zbl

[29] Ola, P.; Somersalo, E. Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J. Appl. Math., Volume 56 (1996), pp. 1129–1145 | MR | Zbl

[30] Salo, M.; Tzou, L. Carleman estimates and inverse problems for Dirac operators, Math. Ann., Volume 344 (2009), pp. 161–184 | DOI | MR | Zbl

[31] Salo, M.; Tzou, L. Inverse problems with partial data for a Dirac system: a Carleman estimate approach, Adv. Math., Volume 225 (2010), pp. 487–513 | DOI | MR | Zbl

[32] Salo, M.; Uhlmann, G. The attenuated ray transform on simple surfaces, J. Differ. Geom., Volume 88 (2011), pp. 161–187 | DOI | MR | Zbl

[33] Schwarz, G. Hodge Decomposition – a Method for Solving Boundary Value Problems, Lecture Notes in Mathematics, vol. 1607, Springer, 1995 | DOI | MR | Zbl

[34] Somersalo, E.; Isaacson, D.; Cheney, M. A linearized inverse boundary value problem for Maxwell's equations, J. Comput. Appl. Math., Volume 42 (1992), pp. 123–136 | DOI | MR | Zbl

[35] Sun, Z.; Uhlmann, G. An inverse boundary value problem for Maxwell's equations, Arch. Ration. Mech. Anal., Volume 119 (1992), pp. 71–93 | MR | Zbl

[36] Taylor, M.E. Partial Differential Equations I: Basic Theory, Springer, 1999

Cited by Sources: