A quantitative theory for the continuity equation
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1837-1850.

In this work, we provide stability estimates for the continuity equation with Sobolev vector fields. The results are inferred from contraction estimates for certain logarithmic Kantorovich–Rubinstein distances. As a by-product, we obtain a new proof of uniqueness in the DiPerna–Lions setting. The novelty in the proof lies in the fact that it is not based on the theory of renormalized solutions.

DOI : 10.1016/j.anihpc.2017.01.001
Mots clés : Continuity equations, Stability estimates, Logarithmic cost functions, Contraction estimates, Uniqueness
@article{AIHPC_2017__34_7_1837_0,
     author = {Seis, Christian},
     title = {A quantitative theory for the continuity equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1837--1850},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2017.01.001},
     zbl = {1377.35041},
     mrnumber = {3724758},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.01.001/}
}
TY  - JOUR
AU  - Seis, Christian
TI  - A quantitative theory for the continuity equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1837
EP  - 1850
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.01.001/
DO  - 10.1016/j.anihpc.2017.01.001
LA  - en
ID  - AIHPC_2017__34_7_1837_0
ER  - 
%0 Journal Article
%A Seis, Christian
%T A quantitative theory for the continuity equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1837-1850
%V 34
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.01.001/
%R 10.1016/j.anihpc.2017.01.001
%G en
%F AIHPC_2017__34_7_1837_0
Seis, Christian. A quantitative theory for the continuity equation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1837-1850. doi : 10.1016/j.anihpc.2017.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.01.001/

[1] Alberti, G.; Crippa, G.; Mazzucato, A.L. Exponential self-similar mixing and loss of regularity for continuity equations, C. R. Math., Volume 352 (2014) no. 11, pp. 901–906 | DOI | MR | Zbl

[2] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | DOI | MR | Zbl

[3] Ambrosio, L.; Crippa, G. Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Volume 144 (2014) no. 6, pp. 1191–1244 | DOI | MR | Zbl

[4] Brenier, Y.; Otto, F.; Seis, C. Upper bounds on coarsening rates in demixing binary viscous liquids, SIAM J. Math. Anal., Volume 43 (2011) no. 1, pp. 114–134 | DOI | MR | Zbl

[5] Bressan, A. A lemma and a conjecture on the cost of rearrangements, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 97–102 | Numdam | MR | Zbl

[6] Colombo, M.; Crippa, G.; Spirito, S. Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1831–1845 | DOI | MR | Zbl

[7] Crippa, G.; De Lellis, C. Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15–46 | MR | Zbl

[8] De Lellis, C.; Gwiazda, P.; Świerczewska-Gwiazda, A. Transport equation with integral terms, 2016 (preprint) | arXiv | MR | Zbl

[9] Depauw, N. Non-unicité du transport par un champ de vecteurs presque BV, Seminaire: Équations aux Dérivées Partielles, 2002–2003, Sémin. Équ. Dériv. Partielles, vol. XIX, École Polytech, Palaiseau, 2003, pp. 9 | Numdam | MR | Zbl

[10] DiPerna, R.J.; Lions, P.-L. On the Fokker–Planck–Boltzmann equation, Commun. Math. Phys., Volume 120 (1988) no. 1, pp. 1–23 | DOI | MR | Zbl

[11] DiPerna, R.J.; Lions, P.-L. Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729–757 | DOI | MR | Zbl

[12] DiPerna, R.J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), Volume 130 (1989) no. 2, pp. 321–366 | DOI | MR | Zbl

[13] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | DOI | MR | Zbl

[14] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[15] Hauray, M.; Le Bris, C. A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields, Ann. Mat. Pura Appl. (4), Volume 190 (2011) no. 1, pp. 91–103 | DOI | MR | Zbl

[16] Iyer, G.; Kiselev, A.; Xu, X. Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, Volume 27 (2014) no. 5, pp. 973–985 | DOI | MR | Zbl

[17] Jabin, P.-E. Differential equations with singular fields, J. Math. Pures Appl. (9), Volume 94 (2010) no. 6, pp. 597–621 | MR | Zbl

[18] Lin, Z.; Thiffeault, J.-L.; Doering, C.R. Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., Volume 675 (2011), pp. 465–476 | MR | Zbl

[19] Loeper, G. A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal., Volume 38 (2006) no. 3, pp. 795–823 (electronic) | DOI | MR | Zbl

[20] Loeper, G. Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68–79 | DOI | MR | Zbl

[21] Otto, F.; Seis, C.; Slepčev, D. Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., Volume 11 (2013) no. 2, pp. 441–464 | DOI | MR | Zbl

[22] Schlichting, A.; Seis, C. Convergence rates for upwind schemes with rough coefficients, 2016 (preprint) | arXiv | MR | Zbl

[23] Seis, C. Maximal mixing by incompressible fluid flows, Nonlinearity, Volume 26 (2013) no. 12, pp. 3279–3289 | DOI | MR | Zbl

[24] Seis, C. Optimal stability estimates for continuity equations, Proc. R. Soc. Edinb., Sect. A (2017) (in press)

[25] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[26] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[27] Yao, Y.; Zlatos, A. Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. (2017) (in press; preprint, 2014) | arXiv | DOI | MR | Zbl

Cité par Sources :