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Abstract

In this work, we provide stability estimates for the continuity equation with Sobolev vector fields. The results are inferred 
from contraction estimates for certain logarithmic Kantorovich–Rubinstein distances. As a by-product, we obtain a new proof of 
uniqueness in the DiPerna–Lions setting. The novelty in the proof lies in the fact that it is not based on the theory of renormalized 
solutions.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

When u : [0, T ] × Rd → Rd , f : [0, T ] × Rd → R and ρ̄ : Rd → R are smooth functions, the solution of the 
Cauchy problem for the continuity equation{

∂tρ + ∇ · (uρ) = f,

ρ(0, · ) = ρ̄
(1)

is found by the method of characteristics: If we denote by φ : [0, T ] × Rd → Rd the flow of the vector field u, i.e.,{
∂tφ(t, x) = u(t,φ(t, x)),

φ(0, x) = x,
(2)

for any (t, x) ∈ [0, T ] × Rd , then the solution to (1) is given by the formula

ρ(t,φ(t, x))det∇φ(t, x) = ρ̄(x) +
t∫

0

f (s,φ(s, x))det∇φ(s, x) ds. (3)

In the non-smooth setting, solutions have to be defined in the sense of distributions. A complete theory of distributional 
solutions, including existence, uniqueness and stability properties, is provided in the seminal works of DiPerna and 
Lions [13] and Ambrosio [2].
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The approach of DiPerna, Lions and Ambrosio relies on the theory of renormalized solutions. Roughly speaking, 
renormalized solutions are distributional solutions to which the chain rule applies in the sense that, for every suitable 
β ∈ C1(R), β(ρ) solves the continuity equation with source β ′(ρ)f + (∇ ·u)(β(ρ) −ρβ ′(ρ)) and initial datum β(ρ̄). 
Whether distributional solutions are renormalized solutions depends on the regularity of u. It has been proved in the 
original paper by DiPerna and Lions [13] that this is true under the condition that u ∈ L1(W 1,1) and ∇ · u ∈ L1(L∞). 
DiPerna and Lions furthermore show that the latter can not be relaxed, in the sense that there are (stationary) vector 
fields in W 1,p for any p < ∞ whose divergence is unbounded and that do not possess this renormalization property. 
Likewise, the authors construct solutions to the continuity equation with u ∈ Ws,1 for any s < 1 (and ∇ · u = 0) that 
are not renormalized. In [2], Ambrosio extends DiPerna’s and Lions’s results to vector fields u ∈ L1(BV ). A coun-
terexample in the non-BV setting is provided by Depauw [9].

The merit of renormalization theory relies on a simple proof of uniqueness and stability. For instance, if η denotes 
the difference of two solutions to the Cauchy problem (1), the choice β(z) = z2 yields

∂tη
2 + ∇ ·

(
uη2

)
= −(∇ · u)η2,

and thus, integration in space and a Gronwall argument shows that

‖η‖L∞(L2) ≤ ‖η̄‖L2 exp
1
2
(‖∇ · u‖L1(L∞)

)
.

Thus, if the initial datum η̄ is zero, then η vanishes identically. For a recent review on the well-posedness theories for 
the continuity equation (1) and the related ordinary differential equation (2), we refer the reader to the lecture notes 
[3].

Renormalization theory is also powerful as it applies to a fairly broad class of transport or kinetic equations, e.g., 
[10,12,11]. What the theory does not provide are stability estimates and bounds on the mixing or unmixing efficiencies 
in terms of the regularity of the advecting vector field. Such estimates, however, attracted much attention recently. For 
instance, in [18,23,16], the continuity equation is considered as model for mixing of tracer particles by a viscous fluid 
flow. An important question in engineering applications is how well tracers can be mixed under a constraint on the 
advecting velocity field. Typically, one is interested in optimal mixing rates in terms of the kinetic energy ‖u‖L2 or, 
more importantly, the viscous dissipation ‖∇u‖L2 . The works [23,16] provide lower bounds on the rate of exponential 
decay of the H−1 norm by ‖∇u‖L1(Lp). Optimality of these bounds is proved in [1,27].

The goal of the present work is to establish stability estimates for continuity equations with Sobolev vector fields 
that allow for variations of vector field, source, and initial datum. We demonstrate the strength of these estimates 
by providing a new proof of uniqueness of distributional solutions. Opposed to the theory of DiPerna, Lions, and 
Ambrosio, our approach does not rely on renormalized solutions. Instead, we obtain uniqueness from a contraction 
estimate under suitable integrability assumptions on the solutions.

Our approach is motivated by a related work by Crippa and De Lellis for the ordinary differential equation (2). In 
[7], the authors derive simple stability estimates for suitably generalized flows, so-called regular Lagrangian flows, 
in the case of Sobolev vector fields u. These estimates allow for a direct proof of well-posedness. Prior to the work 
of Crippa and De Lellis, uniqueness and stability were obtained quite indirectly and exploited the connection to the 
continuity equation (1) and the transport equation{

∂tρ + u · ∇ρ = f,

ρ(0, · ) = ρ̄

via the method of characteristics, cf. [13,2]. Crippa’s and De Lellis’s approach has been partially extended to the BV

setting later by Jabin [17] and Hauray and Le Bris [15].
Focusing on the case p > 1, Crippa and De Lellis prove that any two solutions φ and φ̃ of (2) satisfy estimates of 

the type

sup
t∈(0,T )

∫
log

(
|φ(t, x) − φ̃(t, x)|

δ
+ 1

)
dx � ‖∇u‖L1(Lp), (4)

uniformly in δ > 0. That means, trajectories can only vary in a tube with diameter of order δ. As δ → 0, this tube 
shrinks to a single curve, which proves uniqueness. Crippa’s and De Lellis’s logarithmic estimates generalize the 
well-known estimate valid for flows of Lipschitz vector fields
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sup
t∈(0,T )

sup
x 	=y

log

( |φ(t, x) − φ(t, y)|
|x − y|

)
≤ ‖∇u‖L1(L∞).

The latter states that trajectories diverge at most exponentially in time and yields continuous dependence on the initial 
data. It should be mentioned that the (not displayed) constant in (4) depends on the uniform bound on ∇ · u. In the 
Lipschitz case, this bound is redundant.

Our argument for the continuity equation is very similar. Our substitute for the quantity on the left-hand side of (4)
is a bounded variant of the Kantorovich–Rubinstein distance

Dδ(η) := inf
π∈	(η+,η−)

∫∫
log

( |x − y|
δ

+ 1

)
dπ(x, y),

where the 	(η+, η−) is the set of all joint measures on the product space Rd × Rd with marginals η+ := max{η, 0}
and η− := max{−η, 0},1 and where η denotes the difference of two solutions of the Cauchy problem for the continuity 
equation (1). Notice that the total mass of η+ and η− is the same along the evolution, so that 	(η+, η−) is non-empty. 
We will prove that

sup
t∈(0,T )

Dδ(η(t, · )) � ‖∇u‖L1(Lp), (5)

uniformly in δ, and thus, arguing similarly as for (4), upon choosing δ arbitrarily small we see that η must be zero. In 
the derivation of (5), we will work directly with the distributional formulation of the continuity equation.

Estimates in the flavor of (5) were derived earlier in [4,21,23] in the context of demixing and mixing problems, 
though the proofs in there rather rely on the Lagrangian framework (2) via (3). Due to the logarithmic cost func-
tion, (5) can be considered as a contraction estimate for exp(Dδ(η)). This was the perspective taken in [23] to derive 
exponential lower bounds on mixing measures in terms of the generalized viscous dissipation rate ‖∇u‖L1(Lp). More-
over, building up on (5), the author recently computed optimal convergence rates for numerical schemes (jointly with 
Schlichting) [22] and of diffusive perturbations [24]. Logarithmic energy-type estimates for renormalized solutions of 
the continuity equation where derived earlier in [6].

Before rigorously stating our main results, we specify some assumptions on the data and introduce our notion of 
weak solutions. We let 1 ≤ p, q ≤ ∞ be fixed with 1/p + 1/q = 1 and consider vector fields u in L1

loc(R; W 1,p(Rd)). 
For any locally integrable choice of initial datum ρ̄ and source term f , the following definition of distributional 
solutions is reasonable:

Definition 1. A function ρ ∈ L∞
loc(R; Lq(Rd)) is called a distributional solution of the Cauchy problem for the conti-

nuity equation (1) if
∞∫

0

∫
ρ (∂t ζ + u · ∇ζ ) + f ζ dxdt +

∫
ζ(t = 0, · )ρ̄ dx = 0,

for all functions ζ ∈ C∞
c ([0, ∞) × Rd).

Under suitable integrability assumptions on ρ̄ and f , existence of distributional solutions is obtained via standard 
approximation techniques. Indeed, arguing as in the work of DiPerna and Lions [13], it is not difficult to see that for 
smooth and compactly supported data, we have the estimate

‖ρ‖L∞(Lq) ≤ exp1− 1
q
(‖∇ · u‖L1(L∞)

) (‖ρ̄‖Lq + ‖f ‖L1(Lq)

)
. (6)

This estimate guarantees compactness (the case p = 1 requires a bit more work, cf. [13, p. 515]), provided that the 
right-hand side is finite. In the present work, we will always assume that distributional solutions exist in the sense of 
Definition 1.

It is clear that (6) carries over to renormalized solutions by choosing a smooth approximation of β(z) = |z|q . Our 
ambition is to avoid the theory of renormalized solutions. Still, in our proof of uniqueness we need certain integrability 
assumptions on ρ:

1 The reader will find a proper definition of Kantorovich–Rubinstein distances in Section 2 below.
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Theorem 1 (Uniqueness). Let p, q ∈ [1, ∞] be given with 1/p + 1/q = 1. Suppose that u : (0, T ) × Rd → Rd

is a measurable function with ∇u ∈ L1((0, T ); Lp(Rd)). Then there exists at most one distributional solution in 
L∞((0, T ); L1 ∩ Lq(Rd)) to the Cauchy problem for the continuity equation (1).

We recall that this result was previously derived by DiPerna and Lions [13, Corollary II.1]. Our contribution is a 
new quantitative proof.

In fact, DiPerna’s and Lions’s theory goes far beyond the above theorem. The duo establishes well-posedness in a 
setting where distributional solutions are not even defined [13, Theorem II.3]. This is achieved by restricting the class 
of admissible β’s to bounded functions. For these, the renormalized equation and, in particular, the transport term 
∇ · (uβ(ρ)) make sense distributionally even if ρ is only integrable.

The requirement in Theorem 1 that distributional solutions belong to L1 can be dropped, if, for instance, u is a 
bounded vector field. In this case, the proof has to be modified and a localized version of the continuity equation (1)
has to be considered. Our main result is the following stability estimate in the case p > 1:

Theorem 2 (Stability). Let p ∈ (1, ∞] and q ∈ [1, ∞) be given with 1/p+1/q = 1. Let ρ1 and ρ2 in L∞((0, T ); L1 ∩
Lq(Rd)) be two solutions to the continuity corresponding to the data (u1, f1, ρ̄1) and (u2, f2, ρ̄2), respectively. As-
sume that u1 ∈ L1((0, T ); W 1,p(Rd)) and that

r := ‖u1 − u2‖L1(Lp) + ‖f1 − f2‖L1(Lq) + ‖ρ̄1 − ρ̄2‖Lq � 1.

Then

η := ρ1 − ρ2 − (ρ̄1 − ρ̄2) −
t∫

0

(f1 − f2) ds

is bounded in L∞((0, T ); L1 ∩ Lq(Rd)) and there exists a constant C independent of r such that such that

‖η‖L∞(W−1,1) ≤ C

| log r| . (7)

In the statement, we have used the notation W−1,1 for the dual space of W 1,∞, endowed with the norm

‖η‖W−1.1 = sup

{∫
ηϕ dx : ‖ϕ‖W 1,∞ ≤ 1

}
.

Estimates analogous to (7) in the Lagrangian setting (2) can be found in [7, Theorem 2.9].
We remark that DiPerna and Lions [13] prove L1

loc stability for the continuity equation by the use of renormalized 
solutions. The new contribution here is the stability estimate.

The following example by De Lellis, Gwiazda and Świerczewska-Gwiazda shows that one cannot expect strong 
stability estimates for the continuity equation.

Example 1 ([8]). For k ∈ N, consider the one-dimensional vector fields uk(x) = k−1 sin(kx). We denote by ρk the 
solutions of the homogeneous continuity equation

∂tρk + ∂x(ukρk) = 0, ρk(0) ≡ 1.

It is clear that uk → 0 uniformly, while ∂xuk ⇀ 0 in L1
loc. If we denote by φk the associated flow, then both φk and 

φ−1
k converge uniformly to the identity on R, but ∂xφk does not converge strongly in L1

loc. Using (3) we then compute 
that on any bounded interval I in R and for any T > 0, it holds

T∫
0

∫
I

|ρk(t, x) − 1|dx =
T∫

0

∫
φ−1

k (t,I )

|1 − ∂xφk(t, x)|dx.

In particular,

ρk 	−→ 1 in L1
loc.
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Our method fails in the case p = 1 for the same reason why Crippa’s and De Lellis’s approach for (2) fails: It is 
not clear if estimate (5) holds true if u ∈ L1(W 1,1) or u ∈ L1(BV ). It is not difficult to show that (5) holds in these 
cases if one allows for an error of the order | logδ|, e.g.,

sup
t∈(0,T )

Dδ(η(t, · )) � | log δ|‖∇u‖L1(L1).

This estimate is critical because Dδ(η) ∼ | log δ| if η varies on a scale of order 1. In the Sobolev case, following 
an idea of Jabin [17], this error can be lowered to order o(| logδ|) but one looses the explicit dependence on ∇u. 
As a consequence, such a bound is still enough for proving uniqueness, but too weak to construct explicit stability 
estimates. The p = 1 case of (5) is related to an open conjecture of Bressan [5].

The mathematical reason why our proof (and the one of Crippa and De Lellis) does not extend to the case p = 1 in 
a clean way is connected to failing Calderón–Zygmund theory, more precisely, to the fact that the maximal function 
operator fails to be continuous from L1 to L1. We refer to the discussion on page 1845 and Example 2 on page 1847
for more details.

To the best of our knowledge, in this paper, it is for the first time that uniqueness for the continuity equation with 
non-smooth vector fields is obtained without the use of renormalization theory, and, more importantly, that explicit 
stability estimates are derived. Optimal transportation tools were previously used for nonlinear continuity equations, 
e.g., for the Vlasov–Poisson system [20] and the 2D Euler vorticity equation [19].

The paper is organized as follows. In the following section, we introduce and discuss Kantorovich–Rubinstein 
distances. Section 3 contains the proofs.

2. Kantorovich–Rubinstein distances

The goal of this section is to give an overview on some basic results in the theory of optimal transportation with 
metric cost functions. We choose a presentation that is tailored to our needs, and in particular, we will focus on a 
rather “smooth” setting. For possible generalizations as well as a comprehensive introduction to the topic, we refer to 
Villani’s monograph [26] and the references therein.

Given two (nonnegative) distributions η1 and η2 on Rd with same total mass,∫
η1 dx =

∫
η2 dx,

we consider the set of all joint measures 	(η1, η2). That is, π ∈ 	(η1, η2) is characterized by the requirement that

π[A × Rd ] =
∫
A

η1 dx, π[Rd × A] =
∫
A

η2 dx, (8)

for all measurable sets A in Rd . In the theory of optimal transportation, dπ(x, y) measures the amount of mass that is 
transferred from the producer at x to the consumer at y. Accordingly, we refer to π as a transport plan. Condition (8)
can equivalently be stated as∫∫

ζ1(x) + ζ2(y) dπ(x, y) =
∫

ζ1η1 dx +
∫

ζ2η2 dy, (9)

for all ζ1 ∈ L1(η1 dx) and ζ2 ∈ L1(η2 dx). Supposing that transport of mass over a distance z is described by a 
continuous increasing cost function c(z), the problem of optimal transportation consists of finding a transport plan 
that minimizes the total transportation cost. The minimal transportation cost is thus

Dc(η1, η2) := inf
π∈	(η1,η2)

∫∫
c(|x − y|) dπ(x, y). (10)

We will always assume that c is bounded on R+. Following the direct method of calculus of variations, it is then not 
hard to see that the infimum is actually attained.

In this paper, we will study optimal transportation with concave cost functions c : [0, ∞) → [0, ∞) and c(0) = 0. 
These functions induce a metric d(x, y) = c(|x − y|) on Rd , and the optimal transport problem has the dual formula-
tion
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Dc(η1, η2) = sup
ϕ

{∫
ϕ(η1 − η2) dx : |ϕ(x) − ϕ(y)| ≤ d(x, y)

}
. (11)

The latter is known as the Kantorovich–Rubinstein theorem (cf. [26, Theorem 1.14]). Hence, for concave cost func-
tions, the optimal transportation problem only depends on the difference η1 − η2, and thus, in this case, the problem 
generalizes to distributions that are not necessarily nonnegative. We conveniently write

Dc(η) := Dc(η,0) := Dc(η+, η−)

for any function η in L1(Rd) with zero “mean”,∫
η dx = 0,

and where η+ and η− denote the positive and negative part of η, respectively. Furthermore, because d(x, y) is a 
bounded metric on Rd , the minimal transportation cost Dc(η1, η2) defines a metric on L1(Rd), which goes by different 
names depending on the mathematical community. We follow Villani in [26] and refer to Dc(η1, η2) as Kantorovich–
Rubinstein distance.

The dual problem (11) admits a maximizer ϕopt that saturates the Lipschitz constraint in the form

ϕopt(x) − ϕopt(y) = d(x, y) for dπopt-almost all (x, y),

where πopt is a minimizer of Dc(η+, η−) in the primal formulation (10). We will often refer to ϕopt as a Kantorovich–
Rubinstein potential. It is clear that ϕopt is non-unique: we can always add a constant to ϕopt without changing the 
expectation with respect to η. We can therefore always choose ϕopt as a bounded d-Lipschitz function.

If the cost function c is strictly concave, the above identity and the Lipschitz constraint in turn imply that 
Kantorovich–Rubinstein potentials are weakly differentiable in supp(η) with

∇ϕopt(x) = ∇ϕopt(y), ∇ϕopt(x) = ∇xd(x, y) = c′(|x − y|) x − y

|x − y| , (12)

for dπopt-almost all (x, y). Notice that πopt is supported away from the diagonal and thus x 	= y in (12).2

3. Proofs

Throughout this section, η will always be an integrable, mean-zero distributional solution to a continuity equation. 
In order to measure the distance of such a solution η to the trivial solution, we design a Kantorovich–Rubinstein 
distance with bounded logarithmic cost, more precisely, for any positive δ and R, we set

cδ,R(z) =
⎧⎨
⎩

log
(

z
δ

+ 1
)

for z ≤ R,

log
(

R
δ

+ 1
) + R

R+δ

(
1 − R

z

)
for z ≥ R.

By construction, cδ,R is a continuously differentiable, bounded, and strictly concave function on R+. We shall use the 
abbreviation

Dδ,R(η) := Dcδ,R
(η).

At any time t , let πopt(t) and ϕopt(t, · ) denote the optimal transport plan and the Kantorovich–Rubinstein potential 
corresponding to Dδ,R(η(t, · )). The Lipschitz condition in (11) can be rephrased as

|ϕopt(t, x) − ϕopt(t, y)| ≤
⎧⎨
⎩

log
( |x−y|

δ
+ 1

)
for |x − y| ≤ R,

log
(

R
δ

+ 1
) + R

R+δ

(
1 − R

|x−y|
)

for |x − y| ≥ R.
.

2 The second formula in (12) can be verified as follows: For dπopt-almost all (x, y) it holds that x 	= y, and thus, for any z ∈ Rd and s ∈ R \ {0}
small,

ϕopt(x + sz) − ϕopt(x) ≤ d(x + sz, y) − d(x, y).

Hence, dividing by s be find (12) as s → 0.
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In particular, upon adding a constant to ϕopt, we can always assume that ‖ϕopt‖L∞ ≤ log(Rδ−1 + 1) + R(R + δ)−1. 
Moreover, because cδ,R is Lipschitz (on R+), so is ϕopt(t, · ) with ‖∇ϕopt‖L∞ ≤ δ−1. For further reference, ϕopt ∈
L∞(R; W 1,∞(Rd)) with

‖ϕopt‖L∞(L∞) ≤ log

(
R

δ
+ 1

)
+ R

R + δ
, ‖∇ϕopt‖L∞(L∞) ≤ 1

δ
. (13)

We also infer from (12) that ∇ϕopt(t, x) = ∇ϕopt(t, y) with

∇ϕopt(t, x) =
⎧⎨
⎩

1
δ+|x−y|

x−y
|x−y| if |x − y| ≤ R,

R2

R+δ
1

|x−y|2
x−y
|x−y| if |x − y| ≥ R,

(14)

for dπopt(t)-almost all (x, y).
The heart of this paper is the following stability estimate for the Kantorovich–Rubinstein distance:

Proposition 1. Let 1 ≤ p, q ≤ ∞ be given with 1/p + 1/q = 1. For u1, u2 ∈ L1((0, T ); W 1,p(Rd)), f1, f2 ∈
L1(0, T ); L1 ∩Lq(Rd)) and ρ̄1, ρ̄2 ∈ L1 ∩Lq(Rd), let ρ1 and ρ2 be corresponding solutions to the continuity equation 
(1). Define

η := ρ1 − ρ2 − (ρ̄1 − ρ̄2) −
t∫

0

(f1 − f2) ds.

Then there exist positive constants C1 and C2 which are independent of δ and R such that

‖Dδ,R(η)‖L∞ ≤ C1ψp(δ) + C2

δ

(‖ρ̄1 − ρ̄2‖Lq + ‖u1 − u2‖L1(Lp) + ‖f1 − f2‖L1(Lq)

)
, (15)

for any positive δ and R, where ψp = 1 if p > 1 and otherwise, ψ1 is a continuous function on R+ with 
ψ1(δ)/| log δ| → 0 as δ → 0.

The proof of this proposition requires some preparation. We first compute the temporal rate of change of the 
Kantorovich–Rubinstein distance for solutions of the continuity equation.

Lemma 1. Let j be a vector field in L1((0, T ); L1(Rd)) and η be a mean-zero function in L1((0, T ); L1(Rd)) that 
satisfy the continuity equation

∂tη + ∇ · j = 0

distributionally in (0, T ) × Rd . Let ϕopt be a Kantorovich–Rubinstein potential corresponding to Dδ,R(η) for some 
δ > 0 and R > 0. Then t �→ Dδ,R(η(t, · )) is weakly differentiable with

d

dt
Dδ,R(η) =

∫
j · ∇ϕopt dx. (16)

Proof. We first notice that it is enough to show that (16) holds in the sense of distributions. Indeed, the right-hand 
side of (16) is bounded by ‖∇ϕopt‖L∞‖j‖L1 , which is integrable in time. By decomposing testfunctions into positive 
and negative parts and a standard approximation procedure, it is furthermore sufficient to prove∫

dψ

dt
Dδ,R(η) dt +

∫∫
ψj · ∇ϕopt dxdt = 0, (17)

for all nonnegative testfunctions ψ ∈ C∞
c (0, T ).

For notational convenience, for any time t ∈ R, we will denote by ϕt the potential corresponding to the 
Kantorovich–Rubinstein distance Dδ,R(ηt ), i.e., ϕt = ϕopt(t, · ), where accordingly ηt = η(t, · ). The functions jt , 
and ψt are analogously defined.

By optimality in (11), for any h ∈ R it holds that
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Dδ,R(ηt ) −Dδ,R(ηt−h) ≤
∫

ϕt (ηt − ηt−h) dx.

Integration against ψ and a change of variables yield∫
(ψt − ψt+h)Dδ,R(ηt ) dt ≤

∫∫
(ψtϕt − ψt+hϕt+h)ηt dxdt.

In order to appeal to the distributional formulation of the continuity equation, we shall approximate ϕ by smooth 
functions ϕε that are compactly supported in Rd . This is possible because ϕ is uniformly bounded. We thus have∫

(ψt − ψt+h)Dδ,R(ηt ) dt

≤
∫∫

∂

∂t

⎛
⎝ t∫

t+h

ψsϕ
ε
s ds

⎞
⎠ηt dxdt + o(1)

= −
∫∫

jt ·
⎛
⎝ t∫

t+h

ψs∇ϕε
s ds

⎞
⎠dxdt + o(1)

as ε → 0. We recall that ϕs is a Lipschitz function, so that we can undo the approximation. We may thus drop the ε
in the above estimate. Dividing by h and using Lebesgue’s differentiation and dominated convergence theorems, we 
deduce the statement in (17) as h → 0. �

Using the marginal condition (9) and the calculation (12), we can estimate the rate of change of Dδ,R(η) in (16).

Lemma 2. Let 1 ≤ p, q ≤ ∞ be given with 1/p + 1/q = 1. Let η ∈ L1 ∩ Lq(Rd) be a function with zero mean and 
let πopt and ϕopt be, respectively, a Kantorovich–Rubinstein potential and the optimal transport plan corresponding 
to Dδ,R(η) = Dδ,R(η+, η−) for some δ > 0. Then, for any function u in Lp(Rd),∣∣∣∣

∫
u · ∇ϕoptη dx

∣∣∣∣ ≤
∫∫ |u(x) − u(y)|

δ + |x − y| dπopt(x, y). (18)

Proof. From the marginal condition (9) on transport plans we deduce that∫
u · ∇ϕoptη dx =

∫∫
u(x) · ∇ϕopt(x) − u(y) · ∇ϕopt(y) dπopt(x, y).

We now apply the formula for the gradients of the potentials, (14), to the effect that∫
u · ∇ϕoptη dx =

∫∫
|x−y|≤R

u(x) − u(y)

δ + |x − y| · x − y

|x − y| dπopt(x, y)

+ R2

R + δ

∫∫
|x−y|>R

u(x) − u(y)

|x − y|2 · x − y

|x − y| dπopt(x, y).

Now the statement of the lemma follows easily from the fact that z �→ z2(z + δ)−1 is an increasing function. �
We will first estimate the integral over the difference quotient in (18) in the case where u is a Sobolev function 

with ∇u ∈ Lp for some p > 1. Our proof uses one of the central tools from Calderón–Zygmund theory, namely the 
(Hardy–Littlewood) maximal function operator M . The maximal function Mf of a measurable function f : Rd → R
is given by

Mf (x) = sup
r>0

1

|Br(x)|
∫

|f (y)|dy,
Br(x)
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for x ∈ Rd . The operator is continuous from Lp to Lp if p ∈ (1, ∞], thus

‖Mf ‖Lp ≤ C‖f ‖Lp , (19)

and bounds difference quotients in the sense that

|f (x) − f (y)|
|x − y| ≤ C (M|∇f |(x) + M|∇f |(y)) , (20)

for almost all x, y ∈ Rd . The first estimate if proved in [25, p. 5, Theorem 1], and the second one is a Morrey-type 
estimate and for instance contained in the proof of [14, p. 143, Theorem 3].

The idea of using maximal functions to control the right-hand side of (18) by ‖∇u‖Lp goes back to the work of 
Crippa and De Lellis [7]. In the context of Kantorovich–Rubinstein distances, the techniques were previously used in 
[4,23].

Lemma 3. Let p ∈ (1, ∞] and q ∈ [1, ∞) be given with 1/p + 1/q = 1. Let η be a function in L1 ∩ Lq(Rd) with 
zero mean and let π be a transport plan in 	(η+, η−). Then there exists a universal constant C > 0 such that for any 
integrable function u with ∇u ∈ Lp(Rd),∫∫ |u(x) − u(y)|

|x − y| dπ(x, y) ≤ C‖η‖Lq ‖∇u‖Lp .

Proof. The statement is trivial if p = ∞, and we thus restrict to the case p ∈ (1, ∞).
An application of the Morrey-type estimate (20) yields that∫∫ |u(x) − u(y)|

|x − y| dπ(x, y) ≤ C

∫∫
M|∇u|(x) + M|∇u|(y) dπ(x, y).

In the integrand on the right-hand side, the terms involving x and y are now separated. We can thus apply the marginal 
condition (9), use |η| = η+ + η−, and obtain via Hölder’s inequality∫∫ |u(x) − u(y)|

|x − y| dπ(x, y) ≤ C

∫
M|∇u|(η+ + η−) dx ≤ C‖η‖Lq ‖M|∇u|‖Lp .

We deduce the statement of the lemma with the help of (19). �
In the case where u ∈ W 1,1(Rd), the above argumentation breaks down, because the maximal function operator 

ceases to be continuous on L1, cf. (19). A way to overcome this difficulty was suggested by Jabin in [17]: Because 
∇u belongs to L1(Rd), by the Dunford–Pettis theorem, there exists a nonnegative continuous function e on R+ with

e(ξ)

ξ
increasing, lim

ξ→∞
e(ξ)

ξ
= ∞, (21)

and ∫
e(|∇u|) dx < ∞. (22)

With this function e fixed, we can modify the result of the previous lemma as follows:

Lemma 4. Let η be a bounded mean-zero function in L1(Rd) and let π be a transport plan in 	(η+, η−). Then there 
exists a universal constant C > 0 such that for any function u in W 1,1(Rd), there exists a continuous function ψ
depending only on e and with ψ(ξ)/| log ξ | → 0 as ξ → 0 such that∫∫ |u(x) − u(y)|

δ + |x − y| dπ(x, y) ≤ Cψ(δ)
(‖η‖L1 + ‖η‖L∞‖e(|∇u|)‖L1

)
.

In Example 2 below, we will see that we cannot expect uniform bounds in δ if u has only BV regularity.
In our proof of Lemma 4, we essentially imitate Jabin’s [17] modification of Crippa’s and De Lellis’s estimate (4).
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Proof. We denote by B(x, y) the ball of radius |x − y|/2 and center (x + y)/2. With the help of the elementary 
inequality,

|u(x) − u(y)| ≤ C

∫
B(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

)
|∇u(z)|dz,

cf. [17, Lemma 3.1], we estimate∫∫ |u(x) − u(y)|
δ + |x − y| dπ

≤ C

∫∫ ∫
B(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

) |∇u(z)|
δ + |x − y| dzdπ.

We let M > 0 be an arbitrary constant and denote by BM(x, y) the subset of B(x, y) in which |∇u| is bounded by M . 
As usual, the complementary set will be denoted by BM(x, y)c . Let e be a nonnegative continuous function with (21)
and (22). On the one hand, because∫

B(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

)
dz ≤ C|x − y|,

we have the estimate∫∫ ∫
BM(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

) |∇u(z)|
δ + |x − y| dzdπ

≤ M

∫∫ ∫
B(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

)
1

δ + |x − y| dzdπ

≤ CM‖η‖L1 .

On the other hand, because ξ �→ e(ξ)/ξ is increasing, it holds∫∫ ∫
BM(x,y)c

(
1

|x − z|d−1
+ 1

|y − z|d−1

) |∇u(z)|
δ + |x − y| dzdπ

≤ M

e(M)

∫∫ ∫
B(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

)
e(|∇u(z)|)
δ + |x − y| dzdπ.

The integrand increases if we replace |x − y| by |x − z| or |y − z| in the denominator and extend the inner integral 
over all of Rd . We thus achieve that the integrand splits into a term depending only on x and one depending only on y. 
Invoking the marginal condition (9) and using Fubini, we thus arrive at∫∫ ∫

BM(x,y)

(
1

|x − z|d−1
+ 1

|y − z|d−1

) |∇u(z)|
δ + |x − y| dzdπ

≤ M

e(M)

∫
e(|∇u(z)|)

∫ |η(x)|
|x − z|d−1(δ + |x − z|) dxdz

≤ C
M

e(M)
(| log δ| + 1)‖η‖L∞‖e(|∇u|)‖L1 .

Combining the estimates on BM(x, y) and BM(x, y)c and optimizing in M yields the desired result with

ψ(δ) := inf
M>0

(
M + M

e(M)
(| log δ| + 1)

)
. �
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Example 2. The following construction shows that we cannot expect that Lemma 3 extends to the BV case. In fact, 
we prove that there exists a vector field u with |u|BV ∼ 1 and a mean zero function η such that∫∫ |u(x) − u(y)|

δ + |x − y| dπ(x, y) ∼ | log δ| (23)

as δ � 1. For convenience, we consider the periodic one-dimensional setting. For x ∈ [0, 1), we set

η(x) =
⎧⎨
⎩

1 if x ∈
[
0, 1

2

)
−1 if x ∈

[
1
2 ,1

)
,

and extend η periodically. Then the optimal transport plan πopt is of the form

πopt = (id×T )#η+,

i.e., the push-forward of η+ by the map id×T , where T is the optimal transport map given by

T (x) =
⎧⎨
⎩

−x if x ∈
(

0, 1
4

)
1 − x if x ∈

(
1
4 , 1

2

)
,

and extended periodically. If u = η, then |u|BV ∼ 1 and u(x) − u(y) = 2 for dπopt-almost all (x, y). Thus, if we 
denote by | · |per the periodic distance on the periodic interval [0, 1)per, we have∫∫ |u(x) − u(y)|

δ + |x − y|per
dπopt(x, y) =

∫
[0,1)per

2

δ + |x − T (x)|per
η+(x) dx

=
1/4∫
0

2

δ + 2x
dx +

1/2∫
1/4

2

δ + 1 − 2x
dx

= 2 log

(
1

2δ
+ 1

)
.

This proves (23) if δ � 1.

We are now in the position to proof Proposition 1:

Proof of Proposition 1. Notice that η is constructed in such a way that its mean is zero for almost all times. Indeed, 
by an approximation argument, we verify that

∫
ρi dx =

∫
ρ̄i dx +

t∫
0

∫
fi dxds

for i = 1, 2. We may change η on a set of Lebesgue measure zero to achieve that its mean is constantly zero in time. 
Notice also that η vanishes initially. The continuity equation satisfied by η is of the form

∂tη + ∇ · j = 0,

where

j := u1η + (u1 − u2)ρ2 + u1(ρ̄1 − ρ̄2) + u1

t∫
0

(f1 − f2) ds

is a function in L1((0, T ); L1(Rd)). We infer thus from Lemma 1 that the function t �→ Dδ,R(η(t, · )) is weakly 
differentiable with derivative
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d

dt
Dδ,R(η) =

∫
j · ∇ϕopt dx.

We remark that Dδ,R(η(t, · )) → 0 as t → 0, which follows from the facts that solutions to the continuity equation (1)
approach their initial value weakly in L1 and Kantorovich–Rubinstein distances metrize weak convergence (cf. [26, 
Theorem 7.12]). Integration in time thus yields

‖Dδ,R(η)‖L∞ ≤
T∫

0

∣∣∣∣
∫

u1 · ∇ϕoptη dx

∣∣∣∣dt +
T∫

0

∫
|u1 − u2||∇ϕopt||ρ2|dxdt

+
T∫

0

∫
|u1||∇ϕopt|

⎛
⎝|ρ̄1 − ρ̄2| +

t∫
0

|f1 − f2|ds

⎞
⎠dxdt. (24)

The first term on the right-hand side is estimated via Lemmas 2–4 to the effect that

T∫
0

∣∣∣∣
∫

u1 · ∇ϕoptη dx

∣∣∣∣dt ≤ C1ψp(δ),

where ψp and C1 are as in the statement of the proposition. The remaining terms on the right-hand side of (24) are 
controlled by

‖∇ϕopt‖L∞
(‖u1 − u2‖L1(Lp)‖ρ2‖L∞(Lq) + ‖u1‖L1(Lp)‖ρ̄1 − ρ̄2‖Lq

+‖u1‖L1(Lp)‖f1 − f2‖L1(Lq)

)
.

Invoking (13) yields the desired estimate. �
To prove Theorem 1, we need an additional estimate. For that purpose we define for R > 0,

DR(η) := inf
π∈	(η+,η−)

∫∫
min{|x − y|,R}dπ(x, y).

It is clear that DR(η) = 0 if and only if η = 0.
We have:

Lemma 5. Let η be a mean zero function in L1(Rd). Then for any positive ε, δ, and R,

DR(η) ≤ δ exp

(Dδ,R(η)

ε

)
‖η‖L1 + εR + R log−1

(
R

δ
+ 1

)
Dδ,R(η).

In particular, if there exists a continuous function ψ on R+ with ψ(ξ)/| log ξ | → 0 as ξ → 0, and

sup
δ,R>0

Dδ,R(η)

ψ(δ)
< ∞,

then η = 0.

Proof. We write κ := Dδ,R(η) for abbreviation. Let DR be the set of all points (x, y) in Rd × Rd whose distance is 
at most R. We moreover define K as the subset of DR where cδ,R(|x − y|) ≤ ε−1κ for all (x, y). Then, denoting by 
Kc the complement set of K in DR , it follows that the optimal transport plan πopt satisfies the bound

πopt[Kc] ≤ ε

κ
Dδ,R(η) = ε.

On the one hand, by the definition of K and because c−1
δ,R(ξ) = δ(exp(ξ) − 1) for ξ ≤ log(δ−1R + 1), we have that∫∫

|x − y|dπopt ≤ δ exp
(κ

ε

)
πopt[K] ≤ δ exp

(κ

ε

)
‖η‖L1 .
K
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On the other hand,∫∫
Kc

|x − y|dπopt ≤ Rπopt[Kc] ≤ εR.

Finally, away from the diagonal we have∫∫
Dc

R

dπopt ≤ κ

cδ,R(R)
= κ

log
(

R
δ

+ 1
) .

Combining the previous estimates and optimizing over all π ∈ 	(η+, η−) yields

DR(η) ≤ δ exp
(κ

ε

)
‖η‖L1 + εR + Rκ

log
(

R
δ

+ 1
) ,

which is the first statement of the lemma.
For the second statement, we let first δ → 0 and then ε → 0 and find DR(η) = 0. Thus η = 0. �
It remains to establish our main results.

Proof of Theorem 1. Given two solutions ρ1 and ρ2 of the Cauchy problem (1), we consider their difference η :=
ρ1 − ρ2. Then η satisfies the homogeneous equation with zero initial datum. Applying Proposition 1, we then obtain 
for any positive δ and R that

‖Dδ,R(η)‖L∞ ≤ Cψp(δ),

where ψp = 1 if p > 1 and ψ1 continuous with ψ1(δ)/| log δ| → 0 as δ → 0. In particular, from Lemma 5 we infer 
that η = 0. This shows uniqueness. �
Proof of Theorem 2. Boundedness of η in L∞(L1 ∩ Lq) is an immediate consequence of the assumptions on the 
data. We focus thus on the stability estimate.

Thanks to Proposition 1, there exists a constant C with the desired properties such that for any positive δ and R we 
have

‖Dδ,R(η)‖L∞ ≤ C
(

1 + r

δ

)
.

From here on, we will drop the constants in the displayed formulas. From Lemma 5 with R = 1 and δ = r we then 
obtain that

‖D1(η)‖L∞ � r exp

(
1

ε

)
+ ε + 1

log
(

1
r

+ 1
)

for any ε > 0. We choose ε = | log
√

r|−1, to the effect of

‖D1(η)‖L∞ �
√

r + 1

log
(

1
r

) + 1

log
(

1
r

+ 1
) .

Because r � 1, the right-hand side is of order | log r|−1. It remains thus to observe that

D1(η) ∼ ‖η‖W−1,1,

which follows from the Kantorovich–Rubinstein duality formula (11), because d(x, y) := min{|x − y|, 1} defines a 
metric on Rd . �
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[8] C. De Lellis, P. Gwiazda, A. Świerczewska-Gwiazda, Transport equation with integral terms, preprint, arXiv:1602.03193, 2016.
[9] N. Depauw, Non-unicité du transport par un champ de vecteurs presque BV, in: Seminaire: Équations aux Dérivées Partielles, 2002–2003, in: 

Sémin. Équ. Dériv. Partielles, vol. XIX, École Polytech, Palaiseau, 2003, p. 9.
[10] R.J. DiPerna, P.-L. Lions, On the Fokker–Planck–Boltzmann equation, Commun. Math. Phys. 120 (1) (1988) 1–23.
[11] R.J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math. 42 (6) (1989) 729–757.
[12] R.J. DiPerna, P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2) 130 (2) (1989) 

321–366.
[13] R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (3) (1989) 511–547.
[14] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 

1992.
[15] M. Hauray, C. Le Bris, A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields, Ann. Mat. Pura 

Appl. (4) 190 (1) (2011) 91–103.
[16] G. Iyer, A. Kiselev, X. Xu, Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, 

Nonlinearity 27 (5) (2014) 973–985.
[17] P.-E. Jabin, Differential equations with singular fields, J. Math. Pures Appl. (9) 94 (6) (2010) 597–621.
[18] Z. Lin, J.-L. Thiffeault, C.R. Doering, Optimal stirring strategies for passive scalar mixing, J. Fluid Mech. 675 (2011) 465–476.
[19] G. Loeper, A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal. 38 (3) (2006) 

795–823 (electronic).
[20] G. Loeper, Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9) 86 (1) (2006) 68–79.
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