From optimal transportation to optimal teleportation
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1669-1685.

The object of this paper is to study estimates of ϵqWp(μ+ϵν,μ) for small ϵ>0. Here Wp is the Wasserstein metric on positive measures, p>1, μ is a probability measure and ν a signed, neutral measure (dν=0). In [16] we proved uniform (in ϵ) estimates for q=1 provided ϕdν can be controlled in terms of |ϕ|p/(p1)dμ, for any smooth function ϕ.

In this paper we extend the results to the case where such a control fails. This is the case where, e.g., μ has a disconnected support, or the dimension d of μ (to be defined) is larger or equal to p/(p1).

In the latter case we get such an estimate provided 1/p+1/d1 for q=min(1,1/p+1/d). If 1/p+1/d=1 we get a log-Lipschitz estimate.

As an application we obtain Hölder estimates in Wp for curves of probability measures which are absolutely continuous in the total variation norm.

In case the support of μ is disconnected (corresponding to d=) we obtain sharp estimates for q=1/p (“optimal teleportation”):

limϵ0ϵ1/pWp(μ,μ+ϵν)=νμ
where νμ is expressed in terms of optimal transport on a metric graph, determined only by the relative distances between the connected components of the support of μ, and the weights of the measure ν in each connected component of this support.

DOI : 10.1016/j.anihpc.2016.12.003
Mots clés : Optimal transport, Monge–Kantorovich, Wasserstein metric
@article{AIHPC_2017__34_7_1669_0,
     author = {Wolansky, G.},
     title = {From optimal transportation to optimal teleportation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1669--1685},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.12.003},
     mrnumber = {3724752},
     zbl = {1379.49042},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.003/}
}
TY  - JOUR
AU  - Wolansky, G.
TI  - From optimal transportation to optimal teleportation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1669
EP  - 1685
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.003/
DO  - 10.1016/j.anihpc.2016.12.003
LA  - en
ID  - AIHPC_2017__34_7_1669_0
ER  - 
%0 Journal Article
%A Wolansky, G.
%T From optimal transportation to optimal teleportation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1669-1685
%V 34
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.003/
%R 10.1016/j.anihpc.2016.12.003
%G en
%F AIHPC_2017__34_7_1669_0
Wolansky, G. From optimal transportation to optimal teleportation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1669-1685. doi : 10.1016/j.anihpc.2016.12.003. http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.003/

[1] Ambrosio, L.; Gigli, N.; Savaŕe, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lecture Notes in Mathematics, Birkhäuser, 2005 | MR | Zbl

[2] Ambrosio, L.; Gigli, N.; Piccoli, B.; Rascle, M. Modelling and Optimisation of Flows on Networks Cetraro (2012) (Italy, 2009) | MR

[3] Benamou, J.D.; Brenier, Y. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000), pp. 375–393 | DOI | MR | Zbl

[4] Kantorovich, L.V. On the translocation of masses, Dokl. Akad. Nauk. USSR, Volume 37 (1942) no. 4, pp. 199–201 (English translation in J. Math. Sci., 133, 2006, 1381–1382) | MR

[5] Kantorovich, L.V.; Rubinshtein, G.S. On a space of totally additive functions, Vestn. Leningr. Univ., Volume 13 (1958) no. 7, pp. 52 (59) | MR | Zbl

[6] Järvenpää, E.; Järvenpää, M.; Käenmäki, A.; Rajala, T.; Rogovin, S.; Suomala, V. Packing dimension and Ahlfors regularity of porous sets in metric spaces, Math. Z., Volume 266 (September 2010) no. 1, pp. 83–105 | DOI | MR | Zbl

[7] Lisini, S. Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differ. Equ., Volume 28 (2007), pp. 85–120 | MR | Zbl

[8] McCann, R.J. A convexity principle for interacting gases, Adv. Math., Volume 128 (1997) no. 1, pp. 153–179 | DOI | MR | Zbl

[9] Otto, F. The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 101,174 | MR | Zbl

[10] Rachev, S.T.; Rüschendorf, L.R. Mass Transportation Problems, vol. 1, Springer, 1998 | MR | Zbl

[11] Tanaka, H. An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 27 (1973), pp. 47 (52) | DOI | MR | Zbl

[12] Vasershtein, L.N. Markov processes over denumerable products of spaces describing large system of automata, Probl. Pereda. Inf., Volume 5 (1969) no. 3, pp. 64–72 | MR

[13] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, AMS, 2003 | MR | Zbl

[14] Villani, C. Optimal Transport: Old and New, Springer, 2009 | Zbl

[15] Vershik, A.M. The Kantorovich metric: the initial history and little-known applications, Teor. Predst. Din. Sist. Komb. i Algoritm. Metody., Volume 312 (2004), pp. 69–85 | MR | Zbl

[16] Wolansky, G. Limit theorems for optimal mass transportation, Calc. Var. Partial Differ. Equ., Volume 42 (2011) no. 3–4, pp. 487–516 | MR | Zbl

Cité par Sources :