Two-dimensional impinging jets in hydrodynamic rotational flows
Annales de l'I.H.P. Analyse non linéaire, Volume 34 (2017) no. 6, pp. 1355-1386.

The free streamline theory in hydrodynamics is an important and difficult issue not only in fluid mechanics but also in mathematics. The major purpose in this paper is to establish the well-posedness of the impinging jets in steady incompressible, rotational, plane flows. More precisely, given a mass flux and a vorticity of the incoming flows in the inlet of the nozzle, there exists a unique smooth impinging plane jet. Moreover, there exists a smooth free streamline, which goes to infinity and initiates at the endpoint of the nozzle smoothly. In addition, asymptotic behavior in upstream and downstream, uniform direction and other properties of the impinging jet are also obtained. The main ingredients of the mathematic analysis in this paper are based on the modified variational method developed by H. W. Alt, L. A. Caffarelli and A. Friedman in the elegant works [1,17], which has been shown to be powerful to deal with the steady irrotational flows with free streamlines.

DOI: 10.1016/j.anihpc.2016.10.007
Classification: 76B10, 76B03, 35Q31, 35J25
Keywords: Impinging jet, Incompressible flows, Free boundary, Existence and uniqueness, Variational method
@article{AIHPC_2017__34_6_1355_0,
     author = {Cheng, Jianfeng and Du, Lili and Wang, Yongfu},
     title = {Two-dimensional impinging jets in hydrodynamic rotational flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1355--1386},
     publisher = {Elsevier},
     volume = {34},
     number = {6},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.007},
     zbl = {1451.76019},
     mrnumber = {3712005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.007/}
}
TY  - JOUR
AU  - Cheng, Jianfeng
AU  - Du, Lili
AU  - Wang, Yongfu
TI  - Two-dimensional impinging jets in hydrodynamic rotational flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1355
EP  - 1386
VL  - 34
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.007/
DO  - 10.1016/j.anihpc.2016.10.007
LA  - en
ID  - AIHPC_2017__34_6_1355_0
ER  - 
%0 Journal Article
%A Cheng, Jianfeng
%A Du, Lili
%A Wang, Yongfu
%T Two-dimensional impinging jets in hydrodynamic rotational flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1355-1386
%V 34
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.007/
%R 10.1016/j.anihpc.2016.10.007
%G en
%F AIHPC_2017__34_6_1355_0
Cheng, Jianfeng; Du, Lili; Wang, Yongfu. Two-dimensional impinging jets in hydrodynamic rotational flows. Annales de l'I.H.P. Analyse non linéaire, Volume 34 (2017) no. 6, pp. 1355-1386. doi : 10.1016/j.anihpc.2016.10.007. http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.007/

[1] Alt, H.W.; Caffarelli, L.A. Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105–144 | MR | Zbl

[2] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Asymmetric jet flows, Commun. Pure Appl. Math., Volume 35 (1982), pp. 29–68 | MR | Zbl

[3] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Jet flows with gravity, J. Reine Angew. Math., Volume 35 (1982), pp. 58–103 | MR | Zbl

[4] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Axially symmetric jet flows, Arch. Ration. Mech. Anal., Volume 81 (1983), pp. 97–149 | MR | Zbl

[5] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc., Volume 282 (1984), pp. 431–461 | MR | Zbl

[6] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Jets with two fluids. I. One free boundary, Indiana Univ. Math. J., Volume 33 (1984), pp. 213–247 | MR | Zbl

[7] Alt, H.W.; Caffarelli, L.A.; Friedman, A. Jets with two fluids. II. Two free boundaries, Indiana Univ. Math. J., Volume 33 (1984), pp. 367–391 | MR | Zbl

[8] Birkhoff, G.; Zarantonello, E.H. Jets, Wakes and Cavities, Academic Press, New York, 1957 | MR | Zbl

[9] Brillouin, M. Les surfaces de glissement de Helmholtz et la résistance des fluides, Ann. Chim. Phys., Volume 23 (1911), pp. 145–230 | JFM

[10] Caffarelli, L.A.; Friedman, A. Axially symmetric infinite cavities, Indiana Univ. Math. J., Volume 31 (1982), pp. 135–160 | DOI | MR | Zbl

[11] J.F. Cheng, L.L. Du, Y.F. Wang, On incompressible oblique impinging jet flows, preprint. | MR

[12] Du, L.L.; Duan, B. Global subsonic Euler flows in an infinitely long axisymmetric nozzle, J. Differ. Equ., Volume 250 (2011), pp. 813–847 | MR | Zbl

[13] Du, L.L.; Xie, C.J. On subsonic Euler flows with stagnation points in two dimensional nozzles, Indiana Univ. Math. J., Volume 63 (2014), pp. 1499–1523 | MR | Zbl

[14] Du, L.L.; Xie, C.J.; Xin, Z.P. Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Commun. Math. Phys., Volume 328 (2014), pp. 327–354 | MR | Zbl

[15] Du, L.L.; Xin, Z.P.; Yan, W. Subsonic flows in a multi-dimensional nozzle, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 965–1012 | MR | Zbl

[16] Finn, R. Some theorems on discontinuous plane fluid motions, J. Anal. Math., Volume 4 (1956), pp. 246–291 | MR | Zbl

[17] Friedman, A. Variational Principles and Free-Boundary Problems, Pure Appl. Math., John Wiley Sons, Inc., New York, 1982 | MR | Zbl

[18] Friedman, A. Axially symmetric cavities in rotational flows, Commun. Partial Differ. Equ., Volume 8 (1983), pp. 949–997 | DOI | MR | Zbl

[19] Garabedian, P.R.; Lewy, H.; Schiffer, M. Axially symmetric cavitational flow, Ann. Math., Volume 56 (1952) no. 2, pp. 560–602 | MR | Zbl

[20] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Class. Math., Springer-Verlag, Berlin, 2001 | MR

[21] Gurevich, M.I. Theory of Jets in Ideal Fluids, Academic Press, New York, 1965 | Zbl

[22] Powell, A. On the edgetone, J. Acoust. Soc. Am., Volume 33 (1961), pp. 395–409

[23] Rockwell, D. Oscillations of impinging shear layers, AIAA J., Volume 21 (1983) no. 5, pp. 645–664 | DOI

[24] Shiffman, M. On free boundaries of an ideal fluid, the principle of analytic continuation. I, Commun. Pure Appl. Math., Volume 1 (1948), pp. 89–99 | DOI | MR | Zbl

[25] Shiffman, M. On free boundaries of an ideal fluid, II, Commun. Pure Appl. Math., Volume 2 (1949), pp. 1–11 | DOI | MR | Zbl

[26] Villat, H. Sur la validité des solutions de certains problèmes d'Hydrodynamique, J. Math., Volume 10 (1914) no. 6, pp. 231–290 | JFM | Numdam

[27] Wu, T.Y. Cavity and wakes flows, Annu. Rev. Fluid Mech., Volume 4 (1972), pp. 243–284

[28] Xie, C.J.; Xin, Z.P. Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., Volume 56 (2007), pp. 2991–3023 | MR | Zbl

[29] Xie, C.J.; Xin, Z.P. Existence of global steady subsonic Euler flows through infinitely long nozzle, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 751–784 | MR | Zbl

Cited by Sources: