Convex billiards on convex spheres
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816.

In this paper we study the dynamical billiards on a convex 2D sphere. We investigate some generic properties of the convex billiards on a general convex sphere. We prove that C generically, every periodic point is either hyperbolic or elliptic with irrational rotation number. Moreover, every hyperbolic periodic point admits some transverse homoclinic intersections. A new ingredient in our approach is Herman's result on Diophantine invariant curves that we use to prove the nonlinear stability of elliptic periodic points for a dense subset of convex billiards.

DOI : 10.1016/j.anihpc.2016.07.001
Classification : 37D40, 37D50, 37C20, 37E40
Mots clés : Convex billiards, Generic properties, Homoclinic intersections, Diophantine number, Nonlinearly stable
@article{AIHPC_2017__34_4_793_0,
     author = {Zhang, Pengfei},
     title = {Convex billiards on convex spheres},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {793--816},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.07.001},
     mrnumber = {3661861},
     zbl = {1377.37058},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.07.001/}
}
TY  - JOUR
AU  - Zhang, Pengfei
TI  - Convex billiards on convex spheres
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 793
EP  - 816
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.07.001/
DO  - 10.1016/j.anihpc.2016.07.001
LA  - en
ID  - AIHPC_2017__34_4_793_0
ER  - 
%0 Journal Article
%A Zhang, Pengfei
%T Convex billiards on convex spheres
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 793-816
%V 34
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.07.001/
%R 10.1016/j.anihpc.2016.07.001
%G en
%F AIHPC_2017__34_4_793_0
Zhang, Pengfei. Convex billiards on convex spheres. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816. doi : 10.1016/j.anihpc.2016.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2016.07.001/

[1] Angenent, S.B. A remark on the topological entropy and invariant circles of an area preserving twistmap, Twist Mappings and Their Applications, IMA Vol. Math. Appl., vol. 44, 1992, pp. 1–5 | MR | Zbl

[2] Bangert, V. Mather sets for twist maps and geodesics on tori, Dynamics Reported, vol. 1, Wiley, Chichester, 1988, pp. 1–56 | DOI | MR | Zbl

[3] Bialy, M. Convex billiards and a theorem by E. Hopf, Math. Z., Volume 214 (1993), pp. 147–154 | DOI | MR | Zbl

[4] Bialy, M. Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 3903–3913 | DOI | MR | Zbl

[5] Birkhoff, G. Dynamical systems with two degrees of freedom, Trans. Am. Math. Soc., Volume 18 (1917), pp. 199–300 | DOI | JFM | MR

[6] Birkhoff, G. Dynamical Systems, Colloq. Publ. – Am. Math. Soc., vol. IX, Amer. Math. Soc., Providence, RI, 1966 (original, 1927) | MR | Zbl

[7] Blumen, V.; Kim, K.Y.; Nance, J.; Zharnitsky, V. Three-period orbits in billiards on the surfaces of constant curvature, Int. Math. Res. Not., Volume 21 (2012), pp. 5014–5024 | MR | Zbl

[8] Bolotin, S.V. Integrable billiards on surfaces of constant curvature, Mat. Zametki, Volume 51 (1992), pp. 20–28 (in Russian); translation: Math. Notes, 51, 1992, 117–123 | MR | Zbl

[9] Bunimovich, L.A. On ergodic properties of certain billiards, Funct. Anal. Appl., Volume 8 (1974), pp. 254–255 | MR | Zbl

[10] Bunimovich, L.A. On absolutely focusing mirrors, Ergodic Theory and Related Topics, Lect. Notes Math., vol. 1514, Springer, Berlin, 1992, pp. 62–82 | DOI | MR | Zbl

[11] Bunimovich, L.; Grigo, A. Focusing components in typical chaotic billiards should be absolutely focusing, Commun. Math. Phys., Volume 293 (2010), pp. 127–143 | DOI | MR | Zbl

[12] Bunimovich, L.; Zhang, H-K.; Zhang, P. On another edge of defocusing: hyperbolicity of asymmetric lemon billiards, Commun. Math. Phys., Volume 341 (2016), pp. 781–803 | DOI | MR | Zbl

[13] Burns, K.; Gerber, M. Real analytic Bernoulli geodesic flows on S2 , Ergod. Theory Dyn. Syst., Volume 9 (1989), pp. 27–45 | DOI | MR | Zbl

[14] Chernov, N.; Markarian, R. Chaotic Billiards, Math. Surv. Monogr., vol. 127, AMS, Providence, RI, 2006 | MR | Zbl

[15] Contreras-Barandiaran, G.; Paternain, G. Genericity of geodesic flows with positive topological entropy on S2 , J. Differ. Geom., Volume 61 (2002), pp. 1–49 | DOI | MR | Zbl

[16] L. Coutinho dos Santos, S. Pinto-de-Carvalho, Oval billiards on surfaces of constant curvature, preprint, 2014.

[17] Dias Carneiro, M.J.; Oliffson Kamphorst, S.; Pinto-de-Carvalho, S. Elliptic islands in strictly convex billiards, Ergod. Theory Dyn. Syst., Volume 23 (2003), pp. 799–812 | MR | Zbl

[18] Dias Carneiro, M.J.; Oliffson Kamphorst, S.; Pinto-de-Carvalho, S. Periodic orbits of generic oval billiards, Nonlinearity, Volume 20 (2007), pp. 2453–2462 | DOI | MR | Zbl

[19] Donnay, V. Geodesic flow on the two-sphere, part I: positive measure entropy, Ergod. Theory Dyn. Syst., Volume 8 (1989), pp. 531–553 | MR | Zbl

[20] Donnay, V. Geodesic flow on the two-sphere, part II: ergodicity, Dynamical Systems, Lect. Notes Math., vol. 1342, 1988, pp. 112–153 | DOI | MR | Zbl

[21] Donnay, V. Using integrability to produce chaos: billiards with positive entropy, Commun. Math. Phys., Volume 141 (1991), pp. 225–257 | DOI | MR | Zbl

[22] Donnay, V. Creating transverse homoclinic connections in planar billiards, J. Math. Sci., Volume 128 (2005), pp. 2747–2753 | DOI | MR | Zbl

[23] Donnay, V. Destroying ergodicity in geodesic flows on surfaces, Nonlinearity, Volume 19 (2006), pp. 149–169 | DOI | MR | Zbl

[24] Fayad, B.; Krikorian, R. Herman's last geometric theorem, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009), pp. 193–219 | Numdam | MR | Zbl

[25] Foden, C.L.; Leadbeater, M.L.; Burroughes, J.H.; Peper, M. Quantum magnetic confinement in a curved two-dimensional electron gas, J. Phys. Condens. Matter, Volume 6 (1994) | DOI

[26] Franks, J.; Le Calvez, P. Regions of instability for non-twist maps, Ergod. Theory Dyn. Syst., Volume 23 (2003), pp. 111–141 | DOI | MR | Zbl

[27] Hua, Y.; Xia, Z. Stability of elliptic periodic points with an application to Lagrangian equilibrium solutions, Qual. Theory Dyn. Syst., Volume 12 (2013), pp. 243–253 | MR | Zbl

[28] Gutkin, B.; Smilansky, U.; Gutkin, E. Hyperbolic billiards on surfaces of constant curvature, Commun. Math. Phys., Volume 208 (1999), pp. 65–90 | DOI | MR | Zbl

[29] Ivrii, V. Second term of the spectral asymptotic expansion of the Laplace–Beltrami operator on manifolds with boundary, Funct. Anal. Appl., Volume 14 (1980), pp. 98–106 | DOI | MR | Zbl

[30] Kramli, A.; Simanyi, N.; Szasz, D. Dispersing billiards without focal points on surfaces are ergodic, Commun. Math. Phys., Volume 125 (1989), pp. 439–457 | DOI | MR | Zbl

[31] Lazutkin, V.F. Convex Billiards and Eigenfunctions of the Laplace Operator, Leningrad Univ., Leningrad, 1981 (in Russian) | MR | Zbl

[32] Mackay, R.; Meiss, J. Linear stability of periodic orbits in Lagrangian systems, Phys. Lett. A, Volume 98 (1983), pp. 92–94 | DOI | MR

[33] Markarian, R. Billiards with Pesin region of measure one, Commun. Math. Phys., Volume 118 (1988), pp. 87–97 | DOI | MR | Zbl

[34] Mather, J. Invariant subsets of area-preserving homeomorphisms of surfaces, Adv. Math. Suppl. Stud., Volume 7B (1981), pp. 531–562 | MR | Zbl

[35] Mather, J.; Rassias, Th.M.; Rassias, G.M. Topological proofs of some purely topological consequences of Caratheodory's theory of prime ends, Selected Studies, 1982, pp. 225–255 | MR | Zbl

[36] Moser, J. Stable and Random Motions in Dynamical Systems, Ann. Math. Stud., vol. 77, Princeton University Press, Princeton, NJ, 1973 | MR | Zbl

[37] Oliveira, F. On the generic existence of homoclinic points, Ergod. Theory Dyn. Syst., Volume 7 (1987), pp. 567–595 | DOI | MR | Zbl

[38] Oliveira, F. On the C genericity of homoclinic orbits, Nonlinearity, Volume 13 (2000), pp. 653–662 | DOI | MR | Zbl

[39] Petkov, V.; Stojanov, L. Spectrum of the Poincare map for periodic reflecting rays in generic domains, Math. Z., Volume 194 (1987), pp. 505–518 | DOI | MR | Zbl

[40] Petkov, V.; Stojanov, L. Periods of multiple reflecting geodesics and inverse spectral results, Am. J. Math., Volume 109 (1987), pp. 619–668 | DOI | MR | Zbl

[41] Petkov, V.; Stojanov, L. On the number of periodic reflecting rays in generic domains, Ergod. Theory Dyn. Syst., Volume 8 (1988), pp. 81–91 | DOI | MR | Zbl

[42] Pixton, D. Planar homoclinic points, J. Differ. Equ., Volume 44 (1982), pp. 365–382 | DOI | MR | Zbl

[43] Poincare, H. Les methodes nouvelles de la mecanique celeste, New Methods of Celestial Mechanics, Gauthier-Villars, Paris, 1892 (vol. 1), 1893 (vol. 2), 1899 (vol. 3) (in French)

[44] Pugh, C. The closing lemma, Am. J. Math., Volume 89 (1967), pp. 956–1021 | DOI | MR | Zbl

[45] Pugh, C.; Robinson, C. The C1 closing lemma, including Hamiltonians, Ergod. Theory Dyn. Syst., Volume 3 (1983), pp. 261–313 | DOI | MR | Zbl

[46] Robinson, C. Generic properties of conservative systems, Am. J. Math., Volume 92 (1970), pp. 562–603 | MR | Zbl

[47] Robinson, C. Closing stable and unstable manifolds in the two-sphere, Proc. Am. Math. Soc., Volume 41 (1973), pp. 299–303 | DOI | MR | Zbl

[48] Robinson, C. Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Stud. Adv. Math., CRC Press, 1995 | MR | Zbl

[49] Sarnak, P. Recent progress on the quantum unique ergodicity conjecture, Bull. Am. Math. Soc., Volume 48 (2011), pp. 211–228 | DOI | MR | Zbl

[50] Sinai, Ya.G. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv., Volume 25 (1970), pp. 137–189 | MR | Zbl

[51] Stojanov, L. Generic properties of periodic reflecting rays, Ergod. Theory Dyn. Syst., Volume 7 (1987), pp. 597–609 | DOI | MR | Zbl

[52] Takens, F. Homoclinic points in conservative systems, Invent. Math., Volume 18 (1972), pp. 267–292 | DOI | MR | Zbl

[53] Vetier, A. Sinai billiard in potential field (construction of stable and unstable fibers), Limit Theorems in Probability and Statistics, Colloq. Math. Soc. János Bolyai, vol. 36, North-Holland, Amsterdam, 1984, pp. 1079–1146 | MR | Zbl

[54] Visscher, D. Franks' lemma in geometric contexts, Northwestern University, 2012 (Thesis) | MR

[55] Wojtkowski, M. Principles for the design of billiards with nonvanishing Lyapunov exponents, Commun. Math. Phys., Volume 105 (1986), pp. 391–414 | DOI | MR | Zbl

[56] Xia, Z. Homoclinic points in symplectic and volume-preserving diffeomorphisms, Commun. Math. Phys., Volume 177 (1996), pp. 435–449 | MR | Zbl

[57] Xia, Z. Homoclinic points for area-preserving surface diffeomorphisms | arXiv

[58] Xia, Z.; Zhang, P. Homoclinic points for convex billiards, Nonlinearity, Volume 27 (2014), pp. 1181–1192 | MR | Zbl

[59] Yoccoz, Y. Seminaire Bourbaki, Astérisque, Volume 206 (1992), pp. 311–344 | Numdam | MR | Zbl

Cité par Sources :