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Abstract

In this paper we study the dynamical billiards on a convex 2D sphere. We investigate some generic properties of the convex 
billiards on a general convex sphere. We prove that C∞ generically, every periodic point is either hyperbolic or elliptic with 
irrational rotation number. Moreover, every hyperbolic periodic point admits some transverse homoclinic intersections. A new 
ingredient in our approach is Herman’s result on Diophantine invariant curves that we use to prove the nonlinear stability of elliptic 
periodic points for a dense subset of convex billiards.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dynamical billiards, as a class of dynamical systems, were introduced by Birkhoff [5,6] in his study of La-
grangian systems with two degrees of freedom. A Lagrangian system with two degrees of freedom is isomorphic with 
the motion of a mass particle moving on a surface rotating uniformly about a fixed axis and carrying a fixed conserva-
tive field of force with it. If the surface is not rotating and the force vanishes, then the particle moves along geodesics 
on the surface. If the surface has boundary, then the resulting system is a billiard system.

The classical results of dynamical billiards are closely related to geometrical optics, which has a much longer 
history. For example, the discovery of the integrability of elliptic billiards, according to Sarnak [49], goes back at least 
to Boscovich in 1757. Surprisingly, the billiard dynamics is also related to the spectra property of Laplace–Beltrami 
operator on manifolds with a boundary. More precisely, Weyl’s law in spectral theory gives the first order asymptotic 
distribution of eigenvalues of the Laplace–Beltrami operator on a bounded domain. Weyl’s conjecture on the second 
order asymptotic distribution was proved by Ivrii [29] for any compact manifold with boundary, under the assumption 
that the measure of periodic points of billiard dynamics on that manifold is zero.
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Current study of dynamical billiard systems mainly focuses on the Euclidean case. Birkhoff studied the dynamical 
billiards inside a convex domain on the plane. Birkhoff also conjectured that ellipses are the only integrable billiards. 
A weak version of this conjecture was proved by Bialy [3]. The dynamical billiards on a bounded domain with 
convex scatterers were introduced by Sinai in his study of Boltzmann Ergodic Hypothesis [50] on ideal gases. Sinai 
discovered the dispersing mechanism and proved that dispersing billiards are hyperbolic and ergodic. Since then, 
the mathematical and physical study of chaotic billiards has developed at a remarkable speed (see [14]), particularly 
after the various defocusing mechanisms discovered by Bunimovich [9,10], Wojtkowski [55], Markarian [33] and 
Donnay [21]. Very recently, the dynamics of some asymmetric lemon billiards are proved to be hyperbolic [12], for 
which the separation condition in the defocusing mechanism was strongly violated. See [53,30,28] for the study of 
chaotic billiards on general surfaces. The study of chaotic billiards also provides the key idea for the construction of 
hyperbolic geodesic flows on S2, see [19,20,13].

Dynamical billiards on curved surfaces are related to the study of quantum magnetic confinement of non-planar 2D 
electron gases (2DEG) in semiconductors [25], where the effect of varying the curvature of the surface corresponds 
to a change in the potential energy of the system. The dynamical billiards can be viewed as a mathematical model 
for this system, and may be used to investigate the electron transport properties of the semiconductors. As mentioned 
in [28], the advances in semiconductor fabrication techniques allow to manufacture solid state (mesoscopic) devices 
where electrons are confined to curved surfaces.

In this paper we consider the convex billiards on convex spheres. Recall that the 2D sphere S2 with a smooth 
Riemannian metric g is said to be (strictly) convex, if it has positive Gaussian curvature: Kg(x) > 0 for all x ∈ S2. 
Given a tangent vector v ∈ TxS

2, the geodesic passing through x in the direction of v is defined by the exponential 
map γv : R → S2, t �→ expx(tv). For any two points p, q ∈ S2, let d(p, q) be the length of the shortest geodesics 
connecting p and q . Let Inj(S2, g) be the injective radius of (S2, g).

Example. Let S2 be the unit sphere in R3 endowed with the round metric g0. Then K0 ≡ 1, and every geodesic 
on S2 moves along a great circle. Let p, q ∈ S2 be two points on the sphere, and α be the angle between the two 
position vectors p, q. Then the geodesic distance d0(p, q) between p and q is given by d0(p, q) = α(p, q), and 
cosα = 〈p, q〉. Therefore, d0(p, q) = arccos〈p, q〉. Moreover, Inj(S2, g0) = π . The dynamical billiards inside convex 
subsets of (S2, g0) have been studied recently in [8,4,16]. Regarding the Ivrii conjecture, it is proved in [7] that the 
set of periodic points of period 3 has zero measure for any billiard on the unit sphere.

Definition 1.1. Let (S2, g) be a convex sphere. A closed subset Q ⊂ S2 is said to be (geodesically) convex, if Q is 
simply connected, and for any two points x, y ∈ Q, there is a unique minimizing geodesic contained in Q connecting 
x and y. A convex domain Q is said to be strictly convex, if the interior of each minimizing geodesic is contained in 
the interior Qo of Q.

Let Q ⊂ S2 be a convex domain, s be the arc-length parameter of � = ∂Q, and κ(s) be the geodesic curvature of 
� at �(s). Note that κ(s) ≥ 0 for all s. If Q is strictly convex, then κ(s) > 0 for all s (except on a closed set without 
interior). By definition, there are no conjugate points inside a convex domain Q. In the following we require that there 
are no conjugate points on the closed domain Q. A sufficient condition for nonexistence of conjugate point is that 
diam(Q) < Inj(S2, g).

The dynamical billiard on Q can be defined analogously to the planar case. That is, a particle moves along geodesics 
inside Q, and reflects elastically upon hitting the boundary ∂Q. Suppose the previous reflection happens at �(s). Let 
θ be the angle measured from the (positive) tangent direction �̇(s) to the post-reflection velocity of that particle. Then 
the billiard map F sends (s, θ) to the next reflection (s1, θ1) with ∂Q. The phase space of the billiard map F on Q
is given by M = � × (0, π). Note that the 2-form ω = sin θ ds ∧ dθ is a symplectic form on M . Let μ be the smooth 
probability measure on M with density dμ = 1

2|∂Q| sin θ ds dθ .

Theorem 1. Let (S2, g) be a convex sphere and Q ⊂ S2 be a strictly convex domain with Cr smooth boundary 
� = ∂Q. Then billiard map F : M → M is a symplectic twist map. In particular, F preserves the measure μ.



P. Zhang / Ann. I. H. Poincaré – AN 34 (2017) 793–816 795
It is well known that a twist map has periodic orbits of Birkhoff type (m, n) for all coprime pairs (m, n) [6,2]. It 
may (most likely will) have some non-Birkhoff periodic orbits.1 We study some generic properties of general periodic 
points of dynamical billiards on a strictly convex domain Q on (S2, g). To this end, we identify the boundary � = ∂Q

with the corresponding embedding function f : T → S2. Let r ≥ 2 (r could be ∞), ϒr(S2, g) be the set of Cr smooth 
embeddings � ⊂ S2 such that the enclosed domains Q = Q(�) are strictly convex. Then ϒr(S2, g) inherits a Cr

topology from Cr(T, S2).

Theorem 2. There is a residual subset Rr ⊂ ϒr(S2, g), such that for each � ∈Rr , the billiard map on � satisfies

(1) each periodic point is either hyperbolic, or elliptic with irrational rotation number;
(2) any two branches of invariant manifolds of hyperbolic periodic points either do not intersect, or they have some 

transverse intersections.

Theorem 2 resembles the classical Kupka–Smale properties for dynamical billiards. The abstract Kupka–Smale 
property is proved by applying Thom Transversality Theorem, which requires the richness of local perturbations. 
However, dynamical billiards are known for the lack of local perturbations, since any perturbation of � results in a 
(semi)-global perturbation of the billiard map. See §4 for more details.

Given two hyperbolic periodic points p and q , these two points and their stable and unstable manifolds may be 
separated by some KAM-type invariant curves (which are persistent under small perturbations). So the existence 
of heteroclinic intersections may not be generic. The following theorem answers positively the generic existence of 
homoclinic intersections.

Theorem 3. There is a residual subset Rr ⊂ ϒr(S2, g), such that for each � ∈ Rr , there exist transverse homoclinic 
intersections for each hyperbolic periodic point of the billiard map F induced by �.

The proof of above theorem is based on Mather’s characterization [35] (developed by Franks and Le Calvez in [26]) 
of the prime-end extension of diffeomorphisms on open surfaces. In his proof, Mather made an assumption that each 
elliptic fixed point, if exists, is Moser stable. To apply Mather’s result, we have to study the elliptic periodic points 
first, although the hyperbolic periodic points are the ones we are interested in. The nonlinear stability is proved by one 
of Herman’s results on Diophantine invariant curves. This property guarantees that there is no interaction between the 
hyperbolic and elliptic periodic points.

Note that there are plenty of periodic points for twist maps, and hyperbolic periodic points exist generically. So the 
transverse homoclinic intersections in above theorem do exist generically.

Corollary 1. There is an open and dense subset U r ⊂ ϒr(S2, g), such that for each � ∈ U r , the billiard map on �
has positive topological entropy.

Angenent [1] proved that a twist map with zero topological entropy must have an invariant circle for each rotation 
number in its rotation interval. On the other hand, invariant curves with rational rotation numbers are fragile and can 
easily break up. Therefore, the majority of twist maps should have positive topological entropy. So Corollary 1 can be 
viewed as a special case of Angenent’s result.

Entropy is an important quantity indicating how chaotic a dynamical system is. The mechanism that a transverse 
homoclinic intersection generates chaos was first realized by Poincaré when he came across certain nonconvergent 
trigonometric series during his study of the n-body problem [43]. This mechanism was developed later by Birkhoff 
for the existence of infinitely many periodic points, and by Smale for the formulation of hyperbolic sets (horseshoe). 
Poincaré conjectured that for a generic f ∈ Diffrμ(M), and for every hyperbolic periodic point p of f ,

(P1) Ws(p) ∩ Wu(p)\{p} = ∅ (weaker version);
(P2) Ws(p) ∩ Wu(p) is dense in Ws(p) ∪ Wu(p).

1 Take a planar elliptic billiard for example. The periodic orbits with elliptic caustics are Birkhoff, while the periodic orbits with hyperbolic 
caustics are non-Birkhoff.
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This is the so called Poincaré’s connecting problem.2 In the case r = 1, (P1) was proved by Takens in [52]; (P2) was 
proved in [52] on surfaces, and by Xia [56] in full generality. For r ≥ 2, most results about this connecting problem 
are on surfaces. Pixton proved in [42] the property (P1) for planar surfaces, by extending Robinson’s result [47] on 
fixed points. For M = T

2, (P1) was proved by Oliveira [37]. For general surfaces, (P1) was proved by Oliveira [38]
for those with irreducible homological actions; and by Xia in [57] for Hamiltonian diffeomorphisms. The proof of 
(P1) is still not complete for general surfaces, and there is almost no result on higher dimensions. The property (P2) 
is completely open even on surfaces. For planar convex billiards, (P1) was proved in [58].

Finally we make a few comments on the positive Gaussian curvature assumption of the Riemannian metric g on S2. 
Suppose the curvature can be negative somewhere on the sphere. For example, one can put a small light bulb on the 
table Q as in [23, Fig. 2]. Then the neck of the light bulb will be a hyperbolic closed geodesic, and some geodesic on 
its unstable manifold will hit the boundary � of Q. Reversing the time, we get a billiard trajectory starting on � that 
will not collide with � in the future. In other words, the billiard map F is not defined on the whole phase space and is 
certainly not continuous. It seems that our method in this paper does not work (at least not directly).

2. Preliminaries

Let (S2, g) be a convex sphere, and Q ⊂ S2 be a strictly convex domain with Cr smooth boundary � = ∂Q. Let 
M ⊂ T�S2 be the set of unit tangent vectors x = (p, v) based at points p ∈ � that point to the interior of Q. Given 
a point x ∈ M , let γx(t) = expp(tv) be the geodesic on Q with initial condition (γ (0), γ̇ (0)) = (p, v) = x. Let t1 be 
the next hitting time of γ (t) with �, p1 = γ (t1) ∈ �, and x1 be the reflection of γ̇ (t1) with respect to the tangent line 
Tp1� ⊂ Tp1S

2. Then the billiard map F is defined as M → M , x �→ x1. It is convenient to introduce a coordinate 
system on M . That is, given x = (p, v) ∈ M , let s = s(p) be the arc-length parameter of �, θ = θ(v) be the angle 
of v measured from the tangent direction �̇(s). In the following we will represent M via this coordinate system 
{(s, θ) : s ∈ �, 0 < θ < π}, and rewrite the billiard map F as x = (s, θ) �→ x1 = (s1, θ1).

2.1. Generating function of billiard map

The dynamical billiard has an alternative definition using the generating function. More precisely, let s �→ �(s) be 
the arc-length parameter. We will write s ∈ � by identifying s with �(s) if there is no confusion. For example, we set 
d�(s1, s2) = d(�(s1), �(s2)). Let S(s1, s2) = −d�(s1, s2), and ∂iS be the partial derivative of S with respect to si , i =
1, 2. We extend the generating function to an arbitrary finite segment (sm, . . . , sn) with sk ∈ �, k = m, m + 1, . . . , n, 

and define the action functional W(sm, . . . , sn) =
n−1∑
k=m

S(sk, sk+1) along the segment (sm, . . . , sn). Such a segment is 

said to be an orbit segment, if ∂skW = ∂2S(sk−1, sk) + ∂1S(sk, sk+1) = 0 for each k = m, . . . , n − 1.

Proof of Theorem 1. Given two points s1 and s2, let γ1(t) be the geodesic from γ1(0) = �(s1) to γ1(d) = �(s2), 
where d = d�(s1, s2). Let θ1 be the angle from �̇(s1) to γ̇1(0), and θ2 be the angle from �̇(s2) to γ̇1(d). At �(s2), 
γ1 experiences an elastic reflection, and the new geodesic, say γ2, starts from γ2(0) = �(s2), such that the angle from 
�̇(s2) to γ̇2(0) equals θ2. One can check that

∂1S(s1, s2) = cos θ1, ∂2S(s1, s2) = − cos θ2. (2.1)

Therefore, F(s1, θ1) = (s2, θ2) if and only if ∂1S(s1, s2) = cos θ1 and ∂2S(s1, s2) = − cos θ2. Rewriting (2.1) in total 
differential form, we get dS = cos θ1ds1 −cos θ2ds2. Taking exterior differential and using d2S = 0, we get sin θ2ds2 ∧
dθ2 = sin θ1ds1 ∧ dθ1. Therefore, the 2-form ω = sin θds ∧ dθ is invariant under F , so is the probability measure 
dμ = 1

2|�| sin θdsdθ on M = � × (0, π).
To show that F is a twist map on M = � × (0, π), let’s consider the image of Ms = {s} × (0, π) under F . Let 

γθ (t) be the geodesic starting from �(s) in the direction of θ , and tθ > 0 be the first moment that γθ(t) hits �. The 
hitting position is exactly s1(θ) = p1 ◦ F(s, θ). Since Q is a strictly convex domain on S2, the map s1 : (0, π) → � is 
monotonically increasing. Therefore, F is a symplectic twist map on M . �

2 Poincaré also raised the closing problem about the denseness of periodic points, see [44,45].
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Corollary 2.1. Let � ∈ ϒr(S2, g), and F be the billiard map induced by �. Then for any coprime positive integers 
(p, q) with q ≥ 2, there exists a periodic orbit Op,q of period q that goes around the table p times after one period.

Such an orbit Op,q is called a Birkhoff periodic orbit of type (p, q). See [6,2] for more details. Note that there may 
be some periodic orbits of non-Birkhoff type.

2.2. Criterion of nondegenerate periodic orbits

Let W(s1, . . . , sn) = ∑n
k=1 S(sk−1, sk) be the action on the space of the n-periodic configurations (sk) in the sense 

that sn+k = sk for all k. Then x = (s, θ) ∈ M is a periodic point with period n if and only if ∂kW(s1, . . . , sn) = 0 for 
each k = 1, . . . , n, where xk = Fkx = (sk, θk) are the iterates of x under the billiard map. Given a critical n-periodic 
configuration (sk), we let D2W(s1, . . . , sn) = (∂2

ijW) be the n × n Hessian matrix of W at (s1, . . . , sn).
Let DxF

n be the tangent map at x (counted to its period), which is a 2 × 2 matrix with determinant 1 (since F
preserves the symplectic form ω). Then x is said to be non-degenerate, if 1 is not an eigenvalue of DxF

n. The later 
condition is equivalent to Tr(DxF

n) = 2. Mackay and Meiss proved in [32] that the trace Tr(DxF
n) is closely related 

to the Hessian D2W of W at its critical path (s1, . . . , sn).

Proposition 2.2. Let {Fkx = (sk, θk)} be a periodic orbit of period n, W2 = D2W(s1, . . . , sn) be the Hessian matrix 

of W at (s1, . . . , sn). Then Tr(DxF
n) − 2 = (−1)n · det(W2) ·

(
n∏

i=1

S12(si−1, si)

)−1

.

Note that Tr(DxF
n) = 2 if and only if det(W2) = 0. So we have the following equivalent formulations:

(1) a periodic orbit x = T nx of the billiard map F is nondegenerate;
(2) a critical cycle (s1, . . . , sn) of the action functional W is nondegenerate.

Birkhoff made the following observation in [6]. Let (s1, . . . , sn) be an n-periodic configuration at where W attains its 
minimum. Assume the corresponding periodic orbit x is nondegenerate. Then D2W(s1, . . . , sn) is positive definite, 
and Tr(DxF

n) − 2 > 0. So the periodic point x corresponding to each minimizer turns out to be a hyperbolic periodic 
point.

2.3. Curvature and focusing time of a tangent vector

Now we describe some geometrical features of the tangent map of a billiard map F : M → M on the configuration 
space S2, see [53] for more details. We start with the coordinate system {(s, θ) : s ∈ �, θ ∈ (0, π)} on M , where s is the 
arc-length parameter of the boundary � = ∂Q, and θ is the angle of a unit tangent vector v ∈ T�(s)Q with the direction 
�̇(s). Let x0 = (s0, θ0) ∈ M , γ0(t) be the geodesic generated by x0, V = a∂s + b∂θ ∈ Tx0M be a tangent vector on 
the phase space M , and m(V ) = b

a
be the slope of V with respect to the (s, θ)-coordinate. Let c : (−ε, ε) → M

be a smooth curve passing through c(0) = x0 such that V = ċ(0). Then for each −ε < u < ε, the point c(u) will 
determine a geodesic on Q, say γu(·). Putting them together, we get a beam of geodesics around the geodesic γ0. 
A curve ρ : (−ε, ε) → S2 with ρ(0) = �(s0) and ρ(u) ∈ γu is called a wave-front corresponding to V ∈ TxM , if ρ(u)

is perpendicular to each γu at ρ(u). Let B(V ) be the geodesic curvature of ρ at ρ(0). Note that B(V ) does not depend 
on the choices of curves c with ċ(0) = V .

Convention. A wave-front has negative curvature if it is focusing, and has positive curvature if it is dispersing. Let 
B(V ) = ∞ if p itself is a focusing point.

Any (infinitesimal) wave-front of billiard trajectories on Q focuses at some point forward and some point backward 
on S2 (not necessarily in Q), say p+ and p−. Let f (V ) = d(�(s0), p+) be the forward focusing distance (time) of 
the wavefront related to V ∈ Tx0M . Set f (V ) = 0 when �(s0) itself is a focusing point of the wavefront of V .

Note that B(V ) and f (V ) can be defined via normal Jacobi fields. That is, let J(t) = d
du

∣∣∣
u=0

γu(t) be the Jacobi field 

generated by a beam of geodesics γu along γ0. Jacobi fields are characterized by Jacobi equation: J̈ +R(J, γ̇0)γ̇0 = 0, 
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where R is the curvature tensor. A Jacobi field J is said to be normal, if J(t) is perpendicular to γ̇ (t) for all t . In 
this case we can write J(t) = J (t)nt for some scalar function J (t), where nt is the unit normal vector field along 
γ0(t). The scalar Jacobi function J (t) satisfies the scalar Jacobi equation J̈ + Kg · J = 0, where Kg is the Gaussian 

curvature of (S2, g). Note that we have B(V ) = J̇ (0)
J (0)

, f (V ) = min{t ≥ 0 : J (t) = 0}. So the relation between B(V )

and f (V ) is given by the solution of the Jacobi equation. For example, if B(V ) = 0 then the wavefront focuses at two 
focal points along the geodesic γx (one forward focal point, and one backward focal point), and these two focal points 
are conjugate along γx .

The wave-front of a vector V changes its curvature at the moment when the billiard orbit collides with the bound-
ary �. More precisely, let B±(V ) be the curvature of the wavefront before and after the reflection with �, respectively. 
The relation between the curvature B±(V ) and the slope m(V ) is given by

m(V ) = B−(V ) sin θ − κ(s) = B+(V ) sin θ + κ(s),

where s = p1(x) is the projection to the first coordinate of x.
Now let x = (s, θ) ∈ M , Fx = (s1, θ1), V ∈ TxM , V1 = DF(V ) ∈ Tx1M , and ρ be a wavefront related to V . Let 

Bt (V ) and ft (V ) be the curvature and forward focusing time of the wavefront during the free flight time 0 < t < d1 =
d�(s, s1), B±(V1) and f ±(V1) be the curvature and focusing time right before/after the collision t → d1 ± 0. Then 
we have

(1). Bt (V ) = J̇ (t)
J (t)

, where J (t) is the solution of Jacobi equation;

(2). B+(V1) = B−(V1) − 2κ(s1)

sin θ1
, where κ(s1) > 0 is the curvature at �(s1).

Item (2) is the so called Mirror Formula for geometrical optics on surfaces. Note that ft(V ) = f (V ) − t when t ≤
f (V ). If f (V ) < d�(s, s1), then the wavefront focuses between two consecutive reflections, Bt (V ) jumps from −∞
to +∞, and ft (V ) jumps from 0 to the next focusing time.

Example. In the case that g = g0 is the round metric on S2, the quantities B(V ), f (V ) = d(p, p+) and f̂ (V ) =
d(p, p−) are related by the following formula:

f (V ) + f̂ (V ) = π, B(V ) = − cotf (V ) = cot f̂ (V ). (2.2)

Let B(V ) = cotα0. Then Bt (V ) = cot(α0 + t) for all 0 ≤ t < d(s, s1).

Proof of (2.2). Let’s consider the circles Lα of latitude on S2 surrounding the north pole, where α is the angle 
of the circle with the positive z-axis. Then the radius of Lα is r(α) = sinα, and the geodesic curvature is κ(α) =√

1/r2 − 1 = cotα. Then the results follow from the observation that d(p, p+) = α and d(p, p−) = π − α (and the 
convention on the choices of signs of the curvature). �
2.4. Some generic properties of periodic orbits

Let (S2, g) be a convex sphere, Q ⊂ S2 be a strictly convex domain, and F : M → M be the induced billiard map 
on Q, where M = � × (0, π). Note that the geodesics on Riemannian manifolds are time-reversal invariant (this may 
not be true on general Finsler manifolds). Similarly, the billiard dynamics on a convex table Q ⊂ S2 is time-reversal 
invariant. More precisely, let  : M → M, (s, θ) �→ (s, π − θ) be the time-reversal map. Then F ◦  =  ◦ F−1. So 
if O is a periodic orbit of F , so is (O); and these two orbits are distinct if π/2 /∈ p2(O), where p2 : M → (0, π) is 
the projection to the θ coordinate. Note that O and (O) have the same dynamical characteristics. We only need to 
consider one of them when making perturbations.

Definition 2.1. Two different periodic orbits O1 and O2 are said to be essentially different, if O2 is not the time-reversal 
of O1.
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Fig. 1. Periodic orbits with positive defects. (A): nonsymmetric case; (B): symmetric case. This is merely a simplistic sketch, to illustrate the two 
types of defects of periodic orbits. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

There are some special features for the periodic orbits on the billiard map on Q (see [51]):

(1) it is possible that |O(p)| = |p1(O(p))|: the orbit passes some reflection point more than once during a minimal 
period;

(2) it is possible that |p1(O1 ∪ O2)| = |p1(O1)| + |p1(O2)|: two essentially different periodic orbits have some 
common reflection points.

Take the round table on standard sphere for example: on each point s ∈ �, there exist periodic orbits of type (m, n) for 
all (m, n). This happens even among the orbits with the same period: the (1, 5)-orbit (pentagon) and the (2, 5)-orbit 
(pentagram).

Before giving the precise definition, we need to distinguish the following two cases: symmetric and nonsymmetric 
orbits. A periodic orbit O(p) is said to be symmetric, if θk = π/2 for some k. Along such an orbit, the period n = 2m

is an even number, the right angle reflections happen exactly twice, and the orbit travels back and forth between these 
two reflection points. See [51]. A periodic orbit is said to be nonsymmetric, if it is not symmetric.

Definition 2.2. If a periodic orbit O(p) is nonsymmetric, then the defect of p is defined by the difference d(p) =
|O(p)| − |p1(O(p))|. If O(p) is symmetric, then the defect of p is defined by d(p) = 1

2
|O(p)| + 1 − |p1(O(p))|.

See Fig. 1 for a schematic sketch of (planar) periodic orbits with positive defect: (A) for nonsymmetric case, and 
(B) for symmetric case.

Proposition 2.3. Let Pn(�) be the set of points fixed by Fn. There is a residual subset Sn ⊂ ϒr(S2, g), such that the 
following hold for the billiard map of each � ∈ Sn,

(1) every periodic orbit in Pn(�) has zero defect;
(2) two essentially different periodic orbits in Pn(�) have no common reflection point.

Note that the periodic orbits of period 2 always have zero defect. So S2 = ϒr(S2, g).
For billiards in the Euclidean domain, Proposition 2.3 has been proved by Stojanov [51]. Note that the following 

two statements are equivalent for a given �:

– every periodic orbit has zero defect;
– any periodic path s0, s1, . . . , sn = s0 with positive defect is not a billiard orbit.

Then Proposition 2.3 is proved by showing that the second statement holds generically. The proof for billiards on S2

follows the same idea, and is sketched in the Appendix.

Remark 2.1. Let S = ⋂
n≥1 Sn, which contains a residual subset of ϒr(S2, g). Then for each � ∈ S ,

(a) every periodic orbit of F has zero defect;
(b) two different periodic orbits of F do not pass any common reflection point.
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One would expect that Sn could be open and dense, not just residual. However, this may not be true for general 
domains. In next section we will prove that the properties (a) and (b) do hold on an open and dense subset of the 
convex domains in ϒr(S2, g).

Remark 2.2. The following properties are obtained in [39–41] for billiard systems on a generic connected domain 
in R

d :

(I) the set of points fixed by Fn is finite;
(II) the eigenvalue of each periodic point fixed by Fn is not in A,

where A is any countable subset of R given in advance. The 2D version has been obtained by Lazutkin [31]. We will 
prove that these properties hold on an open and dense subset of convex billiards, and the sets of points fixed by Fn

actually vary continuously. This continuity plays a key role in the study of homoclinic and heteroclinic intersections.

2.5. Parametric Transversality Theorem

Let M and N be two manifolds, K ⊂ M be a subset and V ⊂ N be a submanifold. A smooth map f : M → N is 
said to be transverse to V at x ∈ K if one of the following holds:

• f x /∈ V ;
• y = f x ∈ V and Dxf (TxM) + TyV = TyN .

Then f is said to be transverse to V along K , denoted by f �K V , if f is transverse to V at each x ∈ K . Note 
that for a diffeomorphism f ∈ Diffr (M), a periodic point x of period k is nondegenerate if and only if the map 
(Id, f n) : M → M × M is transverse to the diagonal � ⊂ M × M .

Let M be a smooth manifold, D ⊂ R
q be an open subset, and ρ : D → Cr(M, M × M) be a continuous map for 

some r ≥ 1. The evaluation of ρ, denoted by ρev : D ×M → M ×M is given by (v, x) �→ ρ(v)(x). Now we can state 
the Parametric Transversality Theorem (see [48]).

Theorem 2.4. Suppose ρ : D → Cr(M, M × M) is continuous and ρev : D × M → M × M is Cr . Let K ⊂ M be a 
compact subset such that ρev is transverse to � along D × K . Then the set {v ∈ D : ρ(v) �K �} is open and dense 
in D.

An intuitive description is also given in [48]: if there are enough parameters with which to make the necessary 
perturbations at one point at a time, then the above theorem implies that the function can be approximated by one 
which is transverse at all points in the same time.

3. Perturbations of periodic points of billiard systems

There are various types of perturbation techniques in the study of dynamical systems. One of the widely used 
technique is Franks’ Lemma, which allows us to manipulate the derivatives along a periodic orbit. The perturbations 
for billiard dynamics are very limited, since one cannot perturb the billiard map F directly, while the perturbation of 
the underlining table changes the dynamics (semi)-globally. See Visscher’s thesis [54] for several results on Franks’s 
lemma in geometric contexts (geodesics flows and billiards). In [18] the effect of the perturbation of a planar billiard 
system is computed explicitly via a step by step induction. It is difficult to generalize their approach to dynamical 
billiards on surfaces with non-constant curvature. In this section we present another proof, which uses the geometric 
features of the tangent vectors of the phase space M on the configuration space S2.

We first give some basic definitions. Let p be a periodic point of F of period n, DpFn : TpM → TpM be the 
tangent map, which can be viewed as a matrix in SL(2, R). Let λp be an eigenvalue of DpFn. Then p is said to be 
hyperbolic if |λp| = 1, be parabolic if λp = ±1, and be elliptic otherwise. Recall that a periodic point p is said to be 
degenerate if λp = 1, and be nondegenerate if it is not degenerate.
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Let τ(p) be the trace of DpFn. Then we have the following equivalent definition: p is said to be hyperbolic if 
|τ(p)| > 2, be parabolic if |τ(p)| = 2, be elliptic if |τ(p)| < 2, be degenerate if τ(p) = 2, and be nondegenerate if 
τ(p) = 2. All nondegenerate periodic points persist under small perturbations.

3.1. Useful perturbations of billiard systems

The following perturbations have been widely used in the study of generic properties of billiards.

Definition 3.1. Let s0 ∈ �, and I ⊂ � be a neighborhood of s0. Then a normal perturbation �ε of � at s0 supported 
on I is a convex curve on S2 that satisfies �ε(s) = �(s) for s = s0 and for s /∈ I , �̇ε(s0) = �̇(s0), while the curvature 
changes to κε(s0) = κ(s0) + ε.

The normal perturbations are essentially the only types of perturbations that preserve the orbit O(p), in the mean-
while, change the derivatives of DFn at p. However, a degenerate periodic point may be robustly degenerate under 
normal perturbations.

Example. Let γ be a geodesic starting at a point p ∈ S2, and q be a conjugate point of p along γ . Let Q ⊂ S2 be a 
convex domain containing the geodesic segment γ from p to q as a diameter. Then there is a periodic orbit of period 
2 traveling along γ back and forth. Let p = (p, π/2) be the corresponding point on the phase space M . Then the 
wavefront leaving p as a focusing point will bounce back and forth between these two reflection points p and q, and 
focus at each reflection. If p is a degenerate periodic point for F , then the degeneracy of p persists under normal 
perturbations.

Proof. Our proof actually works for any period. This general formulation will be used later. Let p be a periodic 
point such that there is no multiple reflections at its base point s0, �ε be a normal perturbation of � at s0. Then for 
each V ∈ TpM , the total effect of DpFn

ε on V is a shift of the curvature of the returning wave-front of DpFn(V ): 
B+(DpFn

ε (V )) = B+(DpFn(V )) − 2ε
sin θ

, and a shift of the slope m(DpFn
ε (V )) = m(DpFn(V )) − ε. Therefore, 

DpFn
ε = ± 

[
1 0

−ε 1

]
◦ DpFn. Then the sign is positive, since �ε is a small perturbation of �.

In the setting of the above example, we denote DpF 2 =
[
a b

c d

]
. Then b = 0 since the line 〈∂θ 〉 is invariant, and 

a = d = 1, since a + d = 2 (degeneracy assumption) and ad = 1 (symplectic property). Therefore, DpF 2 =
[

1 0
c 1

]

and DpF 2
ε =

[
1 0

c − ε 1

]
. This implies that p is degenerate for any normal perturbation. �

This type of persistence of degeneracy of periodic orbits (with higher periods) may happen for the convex billiards 
on S2 and for planar billiards. To overcome this difficulty, we need to consider another type of perturbations, which 
shift the base point s0 along the normal direction at �(s0). It is very likely that, after the shifting perturbation, the 
orbit passing through p is not even closed. Luckily for us, such a shift is only needed when the reflection at p is the 
right angle, and there is no multiple reflections at its base point s0 within one period of p. In (and only in) this case, 
the periodic orbit O(p) stays the same after the shift of � along the normal direction at �(s0).

3.2. Perturbations of periodic points

Let A =
[
a b

c d

]
∈ SL(2, R), and Aε =

[
1 0
ε 1

]
◦ A. Then Tr(A) = a + d and Tr(Aε) = a + d + εb. Given a 

periodic point p of period n, we let DpFn =
[
ap bp

cp dp

]
, and denote τ(p) := Tr(DpFn) = ap + dp .

Note that the dynamics near a hyperbolic periodic point is topologically conjugate to the linearized map DpFn (by 
Hartman–Grobman Theorem) and is well understood. However, the dynamics surrounding the degenerate and elliptic 



802 P. Zhang / Ann. I. H. Poincaré – AN 34 (2017) 793–816
ones are quite complicated, very sensitive to the arithmetic properties of the linearization of Fn at p, and depend on 
the nonlinear part of F .

Proposition 3.1. Let � ∈ ϒr(S2, g), and let p be a periodic point of the billiard map F with zero defect. Suppose p
is not hyperbolic. Then there is a Cr small perturbation �ε of � such that the trace τε(p) = τ(p).

In other words, we have the following qualitative descriptions:

(1) if p is degenerate, then after the perturbation, it is either hyperbolic or elliptic;
(2) if p is elliptic, then the rotation number of p can be shifted continuously under the perturbation.

Proof. Let p be a periodic point with period n. Let �ε be a Cr small normal perturbation of � at s0 = p1(p) which 
increases the curvature at s0 by εr . Then we have

τε(p) = Tr(DpFn
ε ) = ap + dp − εr · bp.

If bp = 0, then we are done. In the following we assume bp = 0.
If bp = 0, then we have ap · dp = 1, which implies |ap + dp| ≥ 2. Note that p is assumed to be non-hyperbolic. So 

we actually have |ap + dp| = 2, and DpFn = ± 
[

1 0
cp 1

]
. Then the line 〈∂θ 〉p is fixed by DpFn. Equivalently, the 

corresponding wavefront ρp focuses at s0 = p1(p), and will focus at s0 again when it returns after one period. So we 
only need to show that a small perturbation can destroy the last property (for some point on the orbit) of p.

Case 1. The orbit of p is not symmetric. Then the zero defect property implies that there is no multiple reflection 
along the orbit O(p).

Case 1a. cp = 0. In this case, 〈∂θ 〉p is the only line fixed by DpFn, and ρp is the only invariant wavefront at p
and along the whole orbit of p. Clearly this wavefront does not focus at s1 = p1(Fp), since there is no conjugate 
point on �. Therefore 〈∂θ 〉Fp is not fixed by DFpFn, since the wavefront corresponding to 〈∂θ 〉Fp focuses at s1
(hence is not invariant). This implies bFp = 0, and a normal perturbation �ε of � is performed at s1. Then τε(Fp) =
τ(Fp) − εr · bFp , and the proposition follows since τ(Fp) = τ(p) and τε(Fp) = τε(p).

Case 1b. cp = 0. In this case DpFn = ±I2. We first make a normal perturbation at s0, and get DpFn
ε = ±I2. Then 

we do another perturbation given as in Case 1a.

Case 2. Now we assume that the orbit of p is symmetric. Without loss of generality we assume n > 2. Note that 
there always exist multiple reflections (even though there is no defect). More precisely, there are exactly two simple 
reflections among the orbit O(p), and all other reflections happen exactly twice (forward and backward). Moreover, 
the orbit has perpendicular reflections at these two simple reflections.

Case 2a. There is a wavefront that focuses exactly at those two ends. In this case we make a small shift of � along the 
normal direction at one end, denote the resulting table by �̂, so that the focused wavefront is not invariant any more. 
Then one automatically gets b̂p = 0 and τε(p) = τ(p̂) − εr · b̂p .

Case 2b. No wavefront focuses exactly at those two ends. In this case we make a normal perturbation at one of the 
two ends as we did for Case 1. This completes the proof. �
4. Kupka–Smale properties for convex billiards

Let Q ⊂ S2 be a strictly convex domain with Cr smooth boundary �, M = � × (0, π) be the phase space of the 
billiard map F induced on Q. For each n ≥ 2, let Pn(�) ⊂ M be the set of points fixed by Fn. In the following we will 
show that there is an open and dense subset Un such that for each � ∈ Un, Pn(�) is finite and depends continuously 
on �.
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Denote by A = T × (0, π) the open annulus and by Ā = T × [0, π] the closed annulus. Let E(Ā) be the set of 
positive twist homeomorphisms on Ā that fix every point on the two boundary circles T × {0, π}. Let f ∈ E(Ā), and 
fA be the restriction of f on the open annulus A. The following proposition shows that Pn(fA) cannot accumulate to 
the boundary � × {0, π}.

Proposition 4.1. Let n ≥ 2 and f ∈ E(Ā). There exist a compact set K ⊂ A and a small neighborhood W of f in the 
C0 topology, such that Pn(gA) ⊂ K for each g ∈W .

Remark 4.1. In the previous version of the paper Proposition 4.1 is formulated for convex billiards, and its proof 
relies heavily on some geometric feature of billiard systems. The current formulation of Proposition 4.1 and its proof 
were provided to the author in the report of one of referees. It is clear that the current formulation is better and could 
be useful in other situations. Moreover, the proof is much shorter and easier to follow than the previous version. The 
contribution from the anonymous referee is kindly acknowledged by the author.

Proof. Let n ≥ 2 and f ∈ E(Ā) be given. Let f̃ be the unique lift of f to R ×[0, π] that fixes all the points of R ×{0}. 
There exists a neighborhood V0 ⊃ T × {0} such that for any z ∈ V0, 0 ≤ p1(f̃ z̃) − p1(z̃) < 1

3n
, where ẑ is a lift of 

z and p1 is the projection from R × [0, π] to its first coordinate. Then there exists a small neighborhood V0 of f in 
E(Ā) such that for each g ∈ V0, the lift g̃ satisfies 0 ≤ p1(g̃z̃) − p1(z̃) < 1

2n
for any lift z̃ of a point z ∈ V0.

Pick a smaller neighborhood W0 ⊂ V0 of T × {0} whose closure is contained in 
⋂

0≤k<n f −kV0. Then there exists 
a smaller neighborhood W0 ⊂ V0 of f in E(Ā) such that W0 ⊂ ⋂

0≤k<n g−kV0 for each g ∈ W0. Let g ∈ W0. Then 
we have 0 ≤ p1(g̃

nz̃) − p1(z̃) < 1
2 for each lift z̃ of z ∈ W0. Therefore, Pn(gA) ∩ W0 = ∅ for each g ∈ W0.

Similarly we construct W1 and W1 for the other boundary component T × {π}, and show that Pn(gA) ∩ W1 = ∅
for each g ∈W1. Then let K = A\(W0 ∪ W1), and W =W0 ∩W1. This completes the proof. �
4.1. Finiteness of Pn(�) for most �

A periodic point x is said to be non-degenerate, if 1 is not an eigenvalue of DxF
m(x) : TxM → TxM , where m(x)

is the minimal period of x. The minimal period of a periodic point x ∈ Pn(�) satisfies m(x)|n, and may be strictly 
less than n. Then x is said to be non-degenerate under Fn, if 1 is not an eigenvalue of DxF

n : TxM → TxM .
Let Un ⊂ ϒr(S2, g) be the set of strictly convex domains � ∈ ϒr(S2, g) such that every periodic point x ∈ Pn(�)

is non-degenerate under Fn.

Lemma 4.2. The set Pn(�) is a finite set for each � ∈ Un, and the map � �→ Pn(�) is continuous on Un.

The proof is omitted since it is a classical application of the local inversion theorem in the study of dynamical 
systems. Here we use the local uniform compactness of the set Pn(�) proved in Proposition 4.1.

Note that there is no bifurcation of periodic points in Un. So we have the following corollary.

Corollary 4.3. The cardinal map � ∈ Un → |Pn(�)| is locally constant.

Now we state the first main result of this section.

Proposition 4.4. Let 2 ≤ r < ∞. Then the set Un is an open and dense subset of ϒr(S2, g).

The proof of Proposition 4.4 consists of two parts: the openness and the denseness of Un. The proof of openness of 
Un is quite standard and follows easily from Lemma 4.2. The proof of the denseness of Un is quite long and involved. 
We first give a direct proof for n = 2 to illustrate the idea of the proof. The proof for the general case is given after 
that.

Now we start to prove the denseness of U2. First we introduce a useful notation. Given an open interval I =
(a − ε, a + ε), the subinterval I r = (a − εr , a + εr) will be called the core of I .
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Proof of the denseness of U2. Let � ∈ ϒr(S2, g) be parameterized by T → S2. Given ε > 0, pick a sequence of open 

intervals Ii = (si − ε, si + ε), 1 ≤ i ≤ q2 such that the union of their cores 
q2⋃

i=1

I r
i covers T. We pick ε small enough 

such that each geodesic started on � with θ = π/2 hits each arc Ii no more than once. Then we cover the central 
line Mπ/2 := � × {π/2} ⊂ M by finitely many open subsets Bj ⊂ M , 1 ≤ j ≤ m2, such that for each j ∈ {1, . . . , m2}
and each k = 0, 1, there exists i = i(j, k) such that p1(F

kBj ) ⊂ I r
i(j,k). From now on we fix a set Bj ⊂ M and the 

corresponding index i = i(j, 0).
By taking ε smaller if necessary, we may assume that there exists a local coordinate map φi : B(0, 2) → S2 around 

�(Ii) such that φi([−1, 1]) ⊃ �(Ii), where B(0, 2) ⊂ R
2 is the 2D disk of radius 2. Clearly φi does not reflect the 

curvature of �. Given (s, α) ∈ R
2, let �i(s, α) be a Cr -small and C∞-smooth perturbation of � supported on Ii

(viewed in the local coordinate system φi : B(0, 2) → S2) that

a). shifts I r
i s distance along the geodesic passing through si in the direction of θ = π/4,

b). then rotates the shifted piece of I r
i around its center by an angle α,

c). the complement �\Ii stays unchanged.

Then we use a C∞ bump function to connect the two pieces I r
i and �\Ii . Note that the exact number θ = π/4

in Step a) is not important, as along as θ = π/2. Since ϒr(S2, g) is open, there exists an open disk Di ⊂ R
2 around 

(s, α) = (0, 0), such that �i(s, α) ∈ ϒr(S2, g) and it is (Cr, ε)-close to � for each (s, α) ∈ Di . Let Fi,s,α be the billiard 
map induced by �i(s, α). This gives rise to a map ζi : (s, α) ∈ Di → Fi,s,α , and an evaluation map ζ ev

i : Di ×M → M , 
(s, α, x) �→ Fi,s,α(x).

Note that {Fi,s,0(x) : (s, 0) ∈ Di} and {Fi,0,α(x) : (0, α) ∈ Di} are two smooth curves passing through Fi,0,0(x) =
Fx. Let γs be the geodesic generated by Fi,s,0(x), and ηα be the geodesic generated by Fi,0,α(x), respectively. Then 
{γs : (s, 0) ∈ Di} and {ηα : (0, α) ∈ Di} are two beams of geodesics surrounding the geodesic generated by Fx. 

Let J1 = d
ds

∣∣∣
s=0

γs and J2 = d
dα

∣∣∣
s=α

ηα be the corresponding Jacobi fields. It follows from the construction of the 

perturbations �i(s, α) that J1 and J2 are two linearly independent solutions of the Jacobi equation. In particular, the 
two curves Fi,·,0(x) and Fi,0,·(x) are transverse to each other at Fx. Therefore,

D(0,0,x)ζ
ev
i (R2 × {0x}) = TFxM. (4.1)

Note that Fi,s,α ≡ F on the set of points not based on Ii . Therefore, F 2
i,s,αx = F ◦Fi,s,αx for any x based on Ii and 

for any (s, α) ∈ Di . Then let us consider the graph map ρ2,i of ζi and the corresponding evaluation map ρev
2,i , which 

are given by

ρ2,i : Di �→ Cr−1(M,M × M), (s,α) �→ (Id,F 2
i,s,α),

ρev
2,i : Di × M → M × M,(s,α, x) �→ (x,F 2

i,s,α(x)).

Let � ⊂ M × M be the diagonal. We need to show that ρev
2,i is transverse to � along (0, 0) × Bj . The map ρev

2,i is 
certainly transverse to � at the places that they do not intersect. In the following we assume that they do intersect, and 
let x ∈ Bj be a point such that (x, F 2x) ∈ � ∩ ρev

2,i ((0, 0) × Bj ). In particular this implies F 2x = x. Note that

D(0,0,x)ρ
ev
2,i (R

2 × {0x}) = TxM × {0x}, D(0,0,x)ρ
ev
2,i ({(0,0)} × TxM) = T(x,x)�. (4.2)

Clearly TxM ×{0x} and T(x,x)� span T(x,x)(M ×M). Therefore, the image of ρev
2,i is transverse to � ⊂ M ×M along 

(0, 0) × Bj .
Now we combine all the pieces together and define a new map

ζ : (si , αi)
q2
i=1 ∈

∏
1≤i≤q2

Di �→ F
(si ,αi )

q2
i=1

, (4.3)

such that F(02i−2,si ,αi ,02q2−2i ) = Fi,si ,αi
. Note that the combined perturbations may be destructively large and even 

destroy the convexity of �. However there does exist a small open neighborhood of 0 = 02q2 in 
∏

1≤i≤q2
Di , say 

D2q2 , such that F q2 is well defined and Cr−1 close F . Once again, let ζ ev : D2q2 × M → M be the evaluation 

(si ,αi )i=1
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map of ζ , let ρ2 be the map from D2q2 to Cr−1(M, M × M) such that ρ2
(
(si , αi)

q2
i=1

) = (
Id, F 2

(si ,αi )
q2
i=1

)
. We claim 

that the evaluation map ρev
2 is transverse to � ⊂ M × M along 0 × M . This is clear since for each intersection 

(x, F 2x) ∈ ρev
2 (0 ×M) ∩�, we have F 2x = x and hence x ∈ Mπ/2, that is, an orbit bouncing back and forth between 

two points on �. Then x ∈ Bj for some 1 ≤ j ≤ m2. Let i = i(j, 0) be given such that p1(Bj ) ⊂ I r
i . Then we have

D(0,x)(ρ
ev
2 )(R2q2 × {0x}) ⊃ D(0,0,x)(ρ

ev
2,i )(R

2 × {0x}) = TxM × {0x}, D(0,x)(ρ
ev
2 )(0 × TxM) = T(x,x)�. (4.4)

Then there exists an open neighborhood D ⊂ Dq2 of 0, such that the combined evaluation map ρev
2 is transverse to �

along D × M . Then by Theorem 2.4, there is a dense set subset E ⊂ D such that for each (si, αi)
q2
i=1 ∈ E, the map (

Id, F 2
(si ,αi )

q2
i=1

)
is transverse to � along Mπ/2. In other words, �

(sj ,αj )
q2
i=1

∈ U2 for each (si, αi)
q2
i=1 ∈ E, and � lies in 

the closure of {�
(sj ,αj )

q2
i=1

: (sj , αj )
q2
i=1 ∈ E} ⊂ U2. This shows that U2 is dense in ϒr(S2, g). �

One advantage for the proof of the denseness of U2 is that P2(�) ⊂ Mπ/2 for any � ∈ ϒr(S2, g). So there is 
no interference when making perturbations. For periodic orbits of higher periods, there may exist some interference 
within its own orbit, since there can be some intermediate returns to the same region on � (with different directions). 
So we need to take care of the possible interferences when proving the denseness of Un for n ≥ 3. We will argue by 
Strong Induction. Suppose that we have demonstrated the Cr-denseness of the open subset Uk for each 2 ≤ k < n. In 
the following we will prove that the set Un is also Cr -dense.

Let P ∗
n (�) be those periodic points in Pn(�) with minimal period less than n, and P̄n(�) be those with period 

exactly equal n. We deal with these two parts separately. Although a periodic point in Pk(�) for � ∈ Uk is non-
degenerate under Fk , it may be degenerate under Fn. The following lemma reduces the possible interferences from 
periodic orbits of lower periods.

Lemma 4.5. Let k < n with k|n. Then there is an open and dense subset Uk,n ⊂ Uk , such that for each � ∈ Uk,n, all 
periodic points in Pk(�) are non-degenerate under Fn.

Proof. It follows from the definition that Uk,n is open in Uk . So we only need to show the denseness of Uk,n in Uk . 
Pick � ∈ Uk ∩ Sk . Then we perturb one reflection point on each periodic orbit O(x), say �ε,x such that the rotation 
number ρε(x) of that orbit changes (see Lemma 3.1). Note that the new rotation number depends continuously on the 
size of the perturbation. By choosing ε(x) properly, we can assume the new rotation number is irrational. Note that 
|Pk(�)| is locally constant and Pk(�) varies continuously with respect to � ∈ Uk . After a finite steps of perturbations, 
the new table is in Uk,n. �
Proof of the denseness of Un for n ≥ 3. Let Sn be the open and dense subset given by Proposition 2.3, and Uk,n ⊂ Uk

be the open and dense subset given by Lemma 4.5 for each k < n and k|n. Let U = Sn ∩
⋂

k<n:k|n
Uk,n, which is also 

open and dense in ϒr(S2, g). It suffices to show that Un is dense in U . Now let fix � ∈ U . We will show that � can be 
approximated by a sequence of �i ∈ Un. The whole discussion below will be restricted to a small neighborhood W of 
� given by Lemma 4.1. In particular, let Kn be the uniform compact subset K given there.

It is important to notice that, each periodic point x ∈ P ∗
n (�) is nondegenerate under Fn (since we choose � ∈ U ), 

and is isolated in Pn(�). So we can pick an open neighborhood U ⊃ P ∗
n (�), such that Pn(�̂) ∩ U = P ∗

n (�̂) ⊂ U for 
all �̂ close to �. Then the function (Id, F̂ n) is already transverse to � along U for all nearby �̂. Hence we only need 
to consider the part Kn\U .

Let p2 : M → (0, π) be the projection to the second coordinate. Then p2(Kn) is a compact subset of (0, π). 
Without loss of generality we assume p2(Kn) ⊂ [2θn, π − 2θn] for some θn ∈ (0, π/4). The perturbations used later 
in this proof will be shiftings in the direction of θn. Recall that for n = 2, P2(�) ⊂ Mπ/2 for any �, and we chose π/4
in the proof.

Let x ∈ M , and On(x) = {x, Fx, · · · , Fn−1x} be an orbit segment of x of length n. Let sn(x) be the minimal 
separation of the set {p1(x), p1(Fx), . . . , p1(F

n−1x)} on �. For example, sn(x) = 0 if F ix and Fjx are reflected 
on the same point on � for some 0 ≤ i < j ≤ n − 1. Clearly sn(x) > 0 for each x ∈ P̄n(�), since � ∈ Sn and every 
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periodic orbit in Pn(�) has zero defect. Therefore, sn(x) can be viewed as a quantitative version of the zero defect 
phenomenon.

Claim 1. sn(�) := inf{sn(x) : x ∈ P̄n(�)} > 0.

Proof of Claim 1. Suppose on the contrary that there exists xk ∈ P̄n(�) with sn(xk) → 0. Passing to a subsequence 
if necessary, we assume xk → x, which implies Fnx = x and x is degenerate under Fn. Since every periodic point 
in P ∗

n (�) is nondegenerate under Fn, we must have x ∈ P̄n(�) with sn(x) = 0. This implies that the orbit of x has 
positive defect, contradicts the choice of � ∈ Sn. �

The next claim follows directly from the fact that sn(x) depends continuously on x.

Claim 2. There exists an open neighborhood Vn of P̄n(�), such that sn(x) ≥ sn(�)/2 for any x ∈ Vn.

Let sn(�) be given as above, and ε ∈ (0, 1/5) be a positive number. Pick a sequence of open intervals Ii = (si −
ε · sn(�), si + ε · sn(�)), 1 ≤ i ≤ qn, such that the union of their cores I r

i = (si − εr · sn(�), si + εr · sn(�)) covers �. 
Then we can cover Kn\U by much smaller balls {Bj : j = 1, . . . , mn} such that p1(F

kBj ) ⊂ I r
i (for some i =

i(j, k) ∈ {1, · · · , qn}), for each k ∈ {0, . . . , n − 1} and for each j ∈ {1, · · · , mn}. Note that here one cannot require 
i(j, k) = i(j, 0) for every k ∈ {1, · · · , n − 1}. We will fix a set Bj and the corresponding index i = i(j, 0) for a 
moment and let j and i vary at the final step of the proof.

The perturbations we need here are similar to those we used for proving the denseness of U2, just here we shift 
I r
i in the direction of θn, where θn ∈ (0, π/4) is given such that p2(Kn) ⊂ [2θn, π − 2θn]. More precisely, for each 

(s, α) ∈ R
2, let �i(s, α) be the perturbation supported on Ii that shifts the core part I r

i along the θn direction, and then 
rotates the shifted I r

i around its center by an angle α. There is an open neighborhood Di of (0, 0) such that �i(s, α) ∈
ϒr(S2, g) for any (s, α) ∈ Di . Note that Fi,s,α ≡ F on the set of points not based on Ii . Therefore Fk

i,s,α(x) =
Fk−1 ◦ Fi,s,α(x) for any k ≥ 2 until next reflection of orbit with the segment Ii . Similarly we can define

(1) the evaluation map ζ ev
i : Di × M → M , (s, α, x) �→ Fn

i,s,α(x),

(2) the graph map ρn,i : Di → Cr−1(M, M × M), (s, α) �→ (Id, Fn
i,s,α), and

(3) the related evaluation map ρev
n,i : Di × M → M × M , (s, α, x) �→ (x, Fn

i,s,αx).

We need to show that ρev
n,i is transverse to the diagonal � along (0, 0) × Bj . The proof of this part is slightly different 

from the case n = 2, since here we may have intermediate returns: p1(F
kBj ) ∩ Ii = ∅ for some 1 ≤ k ≤ n − 1. The 

map ρev
n,i is certainly transverse to � at the places that they do not intersect. In the following we assume that they do 

intersect, and let x ∈ Bj be a point such that (x, Fnx) ∈ � ∩ ρev
n,i((0, 0) × Bj ). In particular this implies Fnx = x, 

and x ∈ P̄n(�). Let Vn,j = Vn ∩ Bj , where Vn is given by Claim 2. Note that Vn,j contains a small neighborhood of x

in M , and sn(y) ≥ sn(�)/2 for any y ∈ Vn,j . Therefore, p1(F
kVn,j ) ∩ Ii = ∅ for each 1 ≤ k ≤ n −1, where i = i(j, 0)

is fixed at the beginning of the proof. This implies that Fn
i,s,α(y) = Fn−1 ◦ Fi,s,α(y) for any y ∈ Vn,j . In this way we 

exclude the possible interference of intermediate returns. Then the same argument as in the proof of the case n = 2
shows that ρev

n,i is transverse to the diagonal � at each of their intersection points, see Eq. (4.1) and (4.2). Therefore, 
ρev

n,i is transverse to the diagonal � along (0, 0) × Bj .
Now we combine all the pieces together and define a new map

ζ : (si , αi)
qn

i=1 ∈
∏

1≤i≤qn

Di → F(si ,αi )
qn
i=1

. (4.5)

Again there exists a small neighborhood of 0 = 02qn , say D2qn , such that F(si ,αi )
qn
i=1

is well defined and Cr close to 

F for each (si, αi)
qn

i=1 ∈ D2qn . In the same way we define the combined map ρn : D2qn → Cr−1(M, M × M) and 
its evaluation ρev

n : D2qn × M → M × M . Note that any point x in the intersection (x, Fnx) ∈ � ∩ ρev
n (0 × M)

satisfies Fnx = x, and hence x ∈ Pn(�) ⊂ Kn. Moreover, if x ∈ P ∗
n (�) has minimal period less than n, then it is 

already nondegenerate with respect to Fn. So we are left with the case that x ∈ P̄n(�) has minimal period exactly n. 
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In this case x ∈ Bj for some j . Then using the same argument as in Eq. (4.4), we see that ρev
n is transverse to 

� at (0, x). Letting x vary, we have that the map ρev
n is transverse to � along 0 × Kn. By the openness property 

of transverse intersection, there is an open neighborhood D ⊂ D2qn of 0 such that the map ρev
n is transverse to �

along D × Kn. Then Theorem 2.4 implies that there exists a dense subset of parameters E ⊂ D such that for each 
(sj , αj )

qn

i=1 ∈ E, the map 
(
Id, Fn

(sj ,αj )
qn
i=1

)
is transverse to the diagonal � along Kn. In other words, �(sj ,αj )

qn
i=1

∈ Un

for each (sj , αj )
qn

i=1 ∈ E, and � lies in the closure of {�(sj ,αj )
qn
i=1

: (sj , αj )
qn

i=1 ∈ E} ⊂ Un. This proves the denseness 

of Un in U and hence in ϒr(S2, g). �
In the previous part of this section, we fix the regularity r ≥ 2 and use the notation Un. Now we switch to U r

n

to indicate the dependence of Un on the regularity r . Let Rr = ⋂
n≥2 U r

n . Recall that a periodic point is said to be 
elementary, if it is either hyperbolic, or elliptic with irrational rotation number. Then we have

Theorem 4.6. There exists a residual subset Rr of ϒr(S2, g), such that for each � ∈ Rr , every periodic point of the 
billiard map induced on � is elementary.

Remark 4.2. The proof of Theorem 4.6 among the abstract space Diffrμ(M) was given in [46]. Robinson’s proof is 
based on some version of transversality theorem. The proof using Parametric Transversality Theorem was given later 
in his book [48]. Generally speaking, the transversality result applies if the perturbation space is rich enough. This is 
the difficult part in the study of dynamical billiards, since the perturbations of the billiard map F can only be made 
via deformations of the billiard table �.

Note that the proof of the denseness of Proposition 4.4 does not apply to the case r = ∞ (at least not directly). The 
dynamical nature guarantees that the genericity holds also in C∞ category.

Theorem 4.7. There is a residual subset R∞ ⊂ ϒ∞(S2, g), such that for each � ∈ R∞, every periodic point of the 
billiard map induced on � is elementary.

Proof. Consider the set U∞
n =

(⋃
r≥n

U r
n

)
∩ ϒ∞(S2, g): this set is open in ϒ∞(S2, g) and Cr dense for each r ≥ n. 

Therefore U∞
n is open and C∞ dense in ϒ∞(S2, g). Let R∞ = ⋂

n≥2 U∞
n . �

Let Vn ⊂ ϒr(S2, g) be the set of strictly convex domains Q ⊂ S2 such that

(a). each periodic orbit in Pn(�) has zero defect;
(b). any two periodic orbits in Pn(�) have no common reflection points.

The following proof is based on our understanding of the properties of the billiard maps in the open and dense subset 
Un in ϒr(S2, g).

Proposition 4.8. The set Vn contains an open and dense subset of ϒr(S2, g).

Proof. The denseness follows from Proposition 2.3. It suffices to show the openness of Vn in Un. Let p1 : M → �

be the projection to the first coordinate, sn(�) be the minimal separation between the points in p1(Pn(�)) ⊂ �. Then 
sn(�) > 0 for each � ∈ Un ∩R0. Pick a small open neighborhood U ⊂ Un on which |Pn(·)| is constant and Pn(·) varies 
continuously. Then there exists a smaller neighborhood V ⊂ U of �, such that sn(�̂) > 0 for each �̂ ∈ Vn. Therefore, 
Vn is open in Un. This completes the proof. �
4.2. Transverse heteroclinic intersections

Given a hyperbolic periodic point p of F on M , the stable manifold of p, Ws(p) consists of points x ∈ M that 
d(Fnx, Fnp) → 0 as n → ∞. Similarly we define the unstable manifold Wu(p) of p. Note that both stable and 
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unstable manifolds are immersed curves passing through p. Let Ws,u
± (p) be the branches of Ws,u(p)\{p}. Let Wn ⊂

ϒr(S2, g) be the set of convex domains � ∈ ϒr(S2, g), such that for each pair of hyperbolic periodic points p, q ∈
Pn(�), either Ws(p)± ∩ Wu±(q) = ∅, or Ws±(p) �x Wu±(q) for some x ∈ Ws±(p) ∩ Wu±(q).

Proposition 4.9. The set Wn contains an open and dense subset of ϒr(S2, g).

To prove this result, we need the following perturbation result of Donnay [22].

Lemma 4.10. Let � ∈ ϒr(S2, g). For each i = ±1, let xi = F ix0, ci : (−ε, ε) → M be a smooth curve with ci(0) = xi

such that Fc−1 does not focus at s0 = p1(x0), and is tangent to F−1c1 at x0. Then there is a Cr small perturbation of 
� at the base point s0 such that F̂ c−1 and F̂−1c1 are transverse at x0.

Proof. We consider the normal perturbations �̂ with �̂(s0) = �(s0), �̂′(s0) = �′(s0) and κ̂(s0) = κ(s0) + ε. If the 
perturbation is localized at s0 = p1(x0), then one always has xi = F̂ ix0, and hence x0 ∈ F̂ c−1 ∩ F̂−1c1.

The nonfocusing assumption of Fc−1 means that B−(DF ċ−1(0)) = ∞, and tangency assumption means that 
B−(DF ċ−1(0)) = B−(DF−1ċ1(0)). Suppose κ̂(s0) = κ(s0) after the perturbation. First note that B−(DF̂ ċ−1(0)) and 
B+(DF̂−1ċ1(0)) stay unchanged, since these quantities do not depend on the reflection with �̂(s0). Then according 
to the Mirror Formula,

B+(DF̂ ċ−1(0)) = B−(DF ċ−1(0)) − 2κ̂(s0)

sin θ0
= B+(DF ċ−1(0)) − 2ε

sin θ0
.

Therefore m(DF̂ ċ−1(0)) = m(DF̂−1ċ1(0)) − ε, and the intersection is transverse at x0. �
Proof of Proposition 4.9. We will show that Wn contains an open and dense subset of Vn. Pick a small open set 
V ⊂ Vn on which |Pn(·)| is constant and Pn(·) is continuous. It suffices to show that Wn contains an open and dense 
subset in every such V .

We enumerate Pn(�) as {yi(�) : 1 ≤ i ≤ I }. Given 1 ≤ i, j ≤ I , α, β ∈ {+, −}, let Wijαβ be those � ∈ W such 
that either Ws

α(yi) ∩ Wu
β (yj ) = ∅, or Ws

α(yi) �x Wu
β (yj ) for some x ∈ Ws

α(yi) ∩ Wu
β (yj ). It suffices to show each 

Wijαβ contains an open and dense subset in V , since 
⋂

{Wijαβ : 1 ≤ i, j ≤ I, α, β ∈ {+, −}} is contained in Wn. In 
the following we will fix ij and αβ .

Note that there is a simple dichotomy for � ∈ V :

(1) either there exist �k → � such that Ws
α(yi(k)) and Wu

β (yj (k)) intersect at some point, say xk ,
(2) or there is a smaller neighborhood of � among which Ws

α(yi) and Wu
β (yj ) do not intersect.

It suffices to show the intersections in the first alternative can be perturbed to be transverse. From now on we fix �k

such that Ws
α(yi(k)) and Wu

β (yj (k)) intersect non-transversely at xk , and drop the dependence on k safely.

Note that the minimal separation sn(�) > 0, and the orbit Fkx approximate yi (or yj ) exponentially fast as k →
+∞ (or k → −∞, respectively). By taking some iterates of x if necessary, we can assume that there exists an open 
interval I ⊂ � of s0 = p1(x) such that all other iterates of x stay out of I . Now we consider the wavefront at x
generated by the stable and unstable branches. Note that there is no conjugate point in Q. So no wavefront can focus 
at x and f x simultaneously. Without loss of generality we assume they do not focus at x. In particular, it implies the 
stable and unstable branches are not tangent to the direction 〈∂θ〉 and hence project down to an open interval on �, 
say I . Then we can make a very small perturbation of � supported on I , such that Ws

α(yi) and Wu
β (yj ) intersect 

transversely at x (see Lemma 4.10). Note that transverse intersection, once created, is robust under perturbations. 
Therefore Wijαβ contains an open and dense subset in V . This completes the proof. �

Let Rr
KS = ⋂

n≥2 Wn, which contains a residual subset of ϒr(S2, g).

Theorem 4.11. There is a residual subset Rr
KS of ϒr(S2, g), such that for each � ∈Rr

KS ,

(1) every periodic point of F is elementary;



P. Zhang / Ann. I. H. Poincaré – AN 34 (2017) 793–816 809
(2) for any two hyperbolic branches Ws
α(p) and Wu

β (q),
(2a) either Ws

α(p) ∩ Wu
β (p) = ∅,

(2b) or Ws
α(p) �x Wu

β (q) for some x ∈ Ws
α(p) ∩ Wu

β (q).

The case r = ∞ can be obtained in the same way as we did for Theorem 4.7.

Remark 4.3. The properties of the above theorem resemble the Kupka–Smale properties for convex billiards. How-
ever, the above theorem does not claim that Ws

α(p) and Wu
β (q) are transverse (see [15]), neither that Ws

α(p) and Wu
β (q)

have nontrivial intersection. In general, Ws
α(p) and Wu

β (q) may be separated by some (KAM) invariant curves, and 
this separation is persistent under perturbations. In next section we will study the case when p = q and prove the 
generic existence of homoclinic intersections.

5. Homoclinic intersections for hyperbolic periodic points

In this section we study the existence of homoclinic intersections of hyperbolic periodic points of convex billiards 
on (S2, g). Our main result is the following.

Proposition 5.1. There is an open and dense subset Xn ⊂ ϒr(S2, g) such that for each � ∈ Xn, there exist transverse 
homoclinic intersections for each hyperbolic periodic point p ∈ Pn(�).

It suffices to show such Xn is open and dense in Wn (see Proposition 4.9 for the set Wn). Note that Pn(�) is finite 
and depends continuously for � ∈ Vn, and the existence of transverse intersections is an open condition. Then Xn is 
automatically open in Wn. So it suffices to show the Cr denseness of Xn in Wn.

Remark 5.1. A simple fact that we will use repeatedly in this section is that ϒ∞(S2, g) is Cr dense in ϒr(S2, g)

for any r ≥ 2. For example, the perturbations constructed in Sect. 4 are always C∞, although they are only Cr -small. 
Therefore, we only need to show that the C∞ smooth ones in Xn are already Cr dense in Wn. So in the following all 
the convex tables will be assumed to be C∞, and the perturbations will always be C∞ smooth although they are only 
Cr small in topology.

Before giving the proof, we need some preparations to cut off the connections between the elliptic periodic points 
and the hyperbolic periodic points of F .

5.1. Nonlinear stability of elliptic periodic points

Let f ∈ Diff∞μ (M) and p be a fixed point of f . An elliptic fixed point is also said to be linearly stable. Then a 
fixed point p is said to be (nonlinearly) stable, if there are nesting closed disks {Dn} with p ∈ Dn+1 ⊂ Do

n such that ⋂
n≥1 Dn = {p} and f |∂Dn is transitive. Note that stable fixed points are isolated from the dynamics, and any invariant 

rays either coincide with some of those ∂Dn, or are disjoint from ∂Dn.
Moser proved in [36] his Twist Map Theorem, which says that an elliptic fixed point p is stable, if there exists n ≥ 1

such that the eigenvalue of Dpf satisfies λi
p = 1 for each 1 ≤ i ≤ q , and aj (f

n, p) = 0 for some 1 ≤ j ≤ [n/2] − 1, 
where ak , k ≥ 1 are the coefficients of Birkhoff normal form around p. In this case, p is also said to be Moser stable. 
By perturbing the Birkhoff normal form and then applying Moser twist map theorem, Robinson proved in [46] that 
generically, each elliptic periodic point is Moser stable.

It is expected that a small perturbation of the billiard table will change the coefficients of Birkhoff normal form 
around an elliptic periodic point, and turn that point into nonlinearly stable one. However, it is quite difficult (if not 
impossible) to compute the Birkhoff normal form for convex billiard dynamics on a convex sphere with non-constant 
curvature, since we do not know too much about the explicit form around an elliptic periodic point, and the dependence 
of ak(f

n, p) is quite involved (see [17,11] for the planar case).
In the following we will take a different (simpler) approach to improve the stability of an elliptic periodic points. 

For an elliptic periodic point p, the rotation number ρ of p is given by the rotation number of projective action 
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[DpFn] on the projective space P1. Then p is said to have Diophantine rotation number, if ρ is Diophantine. That is, 
there exist positive numbers c, τ such that∣∣∣ρ − m

n

∣∣∣ ≥ c

|n|2+τ
, for all rational numbers

m

n
. (5.1)

The following is the so called Herman’s Last Geometric Theorem, which states that an elliptic fixed point with 
Diophantine rotation number is nonlinearly stable [59]. See [24] for the history and a complete proof of Herman’s 
LGT.

Proposition 5.2. Let f ∈ Diff∞μ (M) and p be an elliptic fixed point of f with rotation number ρ. If ρ is Diophantine, 
then p is stable.

See [27] for some applications of Herman’s LGT to the study of the stability of Lagrangian equilibrium solutions 
of circular restricted three body problems.

Proposition 5.3. There is a Cr -dense subset Dn ⊂ Wn ∩ ϒ∞(S2, g), such that for each � ∈ Dn, all elliptic periodic 
points in Pn(�) are stable.

Proof. Given a convex domain � ∈Wn ∩ ϒ∞(S2, g), pick a sufficiently small neighborhood U ⊂Wn of � such that 
Pn : �̂ ∈ U �→ Pn(�̂) has the same (finite) cardinality and varies continuously. Note that each periodic point p ∈ Pn(�)

has zero defect. We make a Cr -small and C∞-smooth perturbation of � around one point p from each elliptic periodic 
orbit O(p) in Pn(�), say the resulting domain �̂(ε), such that the rotation number ρε of p respecting the billiard map 
on �̂(ε) is different from the initial rotation number, see Proposition 3.1. Note that the set of Diophantine numbers 
has full measure on the interval (ρ, ρε) Picking a smaller size if necessary, we can assume ρε is already Diophantine.

Any two periodic orbits in Pn(�) have no common reflection points. So the above perturbation can be localized 
at one reflection point and they have disjoint supports on �. In particular the Diophantine rotation numbers of the 
already perturbed ones are preserved by the subsequent perturbations.

After a finite steps (at most |Pn(�)|) Cr -small and C∞-smooth of perturbations, we arrive at some �̂ ∈ U ∩
ϒ∞(S2, g) such that Pn(�̂) = Pn(�), F̂ = F on Pn(�̂) and ρ(p, F̂ ) is Diophantine for each p ∈ Pn(�̂). Then Propo-
sition 5.2 guarantees that each elliptic periodic point in Pn(�̂) is stable. Such a perturbation �̂ can be made arbitrarily 
Cr -close to �. Therefore, Dn is Cr -dense in Wn. �
5.2. Homoclinic intersections

Now we study the hyperbolic periodic points in Pn(�). Although each point x ∈ Pn(�) is fixed by Fn, the two 
branches of the stable (and unstable) manifolds x may be switched by Fn. However, F 2n does fix each branch of 
the invariant manifolds of hyperbolic periodic points in Pn(�). When studying Pn(�), we actually consider the 2n-th 
iteration F 2n of those � ∈ D2n. For simplicity we denote f = F 2n.

Let L be a branch of the unstable manifold Wu(p)\{p}. Then for any x ∈ L, the segment L[x, f x] can be viewed 
as a fundamental domain of L with respect to f = F 2n. As k → +∞, f −kL[x, f x] converges to p, while f kL[x, f x]
may have various limiting behaviors. Denote by ω(L) the limit set of f kL[x, f x] as k → +∞. Similarly we define 
the ω-set3 of stable branches (with respect to f −k). There is a dichotomy for the branches of invariant manifolds 
(see [37]):

• either ω(L) ⊃ L, or ω(L) ∩ L = ∅.

A stronger dichotomy was obtained in [58].

Proposition 5.4. Let f ∈ Diffμ(M) such that each fixed point is nondegenerate, and each elliptic fixed point is stable. 
Let L be a branch of invariant manifolds of a hyperbolic fixed point p. Assume fL = L. Then

3 Technically, one should say the α-set of a stable branch. We use the same notation for stable and unstable branches just to unify the presentation 
of this paper.
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• either ω(L) ⊃ L,
• or ω(L) = {q} is a singleton, where q is a hyperbolic fixed point.

The branch L with ω(L) = {q} is called a saddle connection. A saddle connection is said to be a homoclinic 
(heteroclinic, respectively) connection if q = p (q = p, respectively).

Proof. We sketch the main idea of the proof. See [58] for details. Let L be a branch of the unstable manifold of p. 
Suppose ω(L) ⊃ L. Then ω(L) ∩ L = ∅. Let K be the closure of L, and U be a connected component of M\K
attached to L. Let Û be the prime-end compactification of U , whose boundary consists of finitely many circles. One 
of the circles, say Cp , contains the prime point p̂ of p. The restriction of f̂ on Cp is a circle diffeomorphism, and 
admits p̂ as an expanding fixed point. So there is at least one more point on Cp fixed by f̂ , say q̂ . Let q be the 
underlining point of q̂ on the closure U , which must be fixed by f . Such a point cannot be elliptic, since elliptic ones 
are stable and cannot be approached by invariant curves outside Dn. Then q must be a hyperbolic fixed point, and L
forms a branch of the stable manifold of q . Therefore, ω(L) = {q}. �

As a corollary, we obtain the following result due to Mather [34]. Our formulation is slightly stronger. See also 
[58, Corollary 3.4].

Proposition 5.5. Let f ∈ Diffμ(M) such that each fixed point of f is either hyperbolic, or elliptic with Diophantine 
rotation number. Let p be hyperbolic fixed point such that all four branches of Ws,u

± (p) are fixed by f . Then either 
one of the branch forms a saddle connection, or all four branches have the same closure.

Proof. Pick a local coordinate system (U, (x, y)) around p such that the branches leave p along the two axes. Suppose 
none of the four branches is a saddle connection. Then each branch is recurrent, and its ω-set contains the branch itself 
and at least one of the branches adjacent to it. If the ω-set of a branch L does not contain the other adjacent branch, 
say K , then we have K ∩L = ∅. Consider the component V of M\L containing K . Then there exists an smaller open 
neighborhood W ⊂ U of p, such that ∂V ∩ W consists of the two pieces of the invariant manifolds of p. One of the 
two pieces is from L, the other piece must be from K− (the other branch of the invariant manifold containing K). On
the other hand, we have ∂V ∩ W ⊂ L. Therefore K− = L forms a homoclinic loop, which contradicts the hypothesis 
we started with. �
Proposition 5.6. Let � ∈ D2n. Then for each hyperbolic periodic point x ∈ Pn(�), there exist transverse homoclinic 
intersections between each branch of the stable manifold and each branch of the unstable manifold of x.

The proof mainly use the fact that the (algebraic) intersection number between two simple closed curves on M
must be 0. This kind of arguments also appeared in [47,42,37,58].

Proof. Let � ∈ D2n, F be the induced billiard map on M = � × (0, π). Note that there is no saddle connection 
between any hyperbolic periodic points in P2n(�) (by the definition of W2n, since D2n ⊂ W2n), and each elliptic 
periodic point in P2n(�) is stable (by Proposition 5.3, since D2n ⊂ ϒ∞(S2, g)).

Let p be a hyperbolic periodic point in Pn(�), L be a branch of the unstable manifold of p, and K be a branch 
of the stable manifold of p. Then both L, K are fixed by F 2n, are recurrent, and they have the same closure (by 
Proposition 5.5). Pick a local coordinate system (U, (x, y)) around p such that L leaves p along the positive x-axis, 
and L approximates p through the first quadrant. Let Sε = {(x, y) ∈ U : 0 < x, y ≤ 1, xy ≤ ε}, and q be the first 
moment on L that hits Sε . Let C be the closed curve that starts from p, first travels along L to the point q , and then 
the segment qp from q to p. Then C is a simple closed curve. See Fig. 2.

Since the closure of K contains L, K also intersects Sε . Let Ĉ be the corresponding simple closed curve by 
closing the first intersection q̂ of K with Sε . Then we see that C and Ĉ cross each other at p, and the two open 
segments (p, q) and (p, q̂) do not intersect (by the entrance–exit analysis, see [37,58]). Clearly L(p, q) ∩ (p, q̂) = ∅
and K(p, q̂) ∩ (p, q) = ∅.

However, the algebraic intersection number between any two closed curves on M must be 0. So C and Ĉ have 
to cross each other at some point beside p, say y, and that intersection must happen between L(p, q) and K(p, q̂). 
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Fig. 2. The closing curves C (red) and Ĉ (blue) when K leaves along the positive y-axis. The case that K leaves along the negative y-axis is similar. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Therefore, there is a homoclinic intersection between K and L. The intersection at y is a topological crossing, but 
may not be transverse. However, transverse homoclinic intersections do exist, since D2n ⊂W2n. �

Note that no perturbation is needed for the proof of the above proposition.

Proof of Proposition 5.1. As we discussed right after stating Proposition 5.1, Xn is open in Wn. Let D2n be the dense 
subset of W2n given by Lemma 5.3. Then Proposition 5.6 shows that D2n ⊂ Xn. Therefore, Xn is open and dense in 
ϒr(S2, g). This completes the proof. �
Proof of Theorem 3. Let Rr = ⋂

n≥1 Xn. Then Rr is a residual subset of ϒr(S2, g). For each f ∈ R, and each 
hyperbolic periodic point p, its stable and unstable manifolds admit some transverse intersections. This completes the 
proof. �

The case r = ∞ can be proved in the same way as we did for Theorem 4.7.

5.3. Positive topological entropy

Corollary 5.7. There is an open and dense subset U ⊂ ϒr(S2, g) such that for each � ∈ U , the billiard map has 
transverse homoclinic intersections and positive topological entropy.

Proof. Let D2 be the dense subset given in Lemma 5.3. Let � ∈D2. Then each point x ∈ P2(�) is non-degenerate. Let 
W(s1, s2) = S(s0, s1) + S(s1, s2) be the action along the 2-periodic configuration (sk) on �. Let (sk) be an 2-periodic 
configuration at where W attains its minimum, and x the corresponding periodic point of period 2. Then D2W(s1, s2)

is positive definite, and Tr(DxF
2) > 2 (see Proposition 2.2). So x is hyperbolic. Moreover, each branch of the invariant 

manifolds of x is fixed by F 2, since both eigenvalues are positive (the double period iterate F 2n is not needed for 
minimizers). Then the proof of Proposition 5.6 shows that there exist transverse homoclinic intersections of the stable 
and unstable branches of x. Transverse intersections are robust. So there exists an open set U ⊃ D2 such that each 
� ∈ U has transverse homoclinic intersections and positive topological entropy. �
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Appendix A. Zero defect for generic convex billiards

In this section, we give a proof of Proposition 2.3. Let ϒr(S2, g) ⊂ Cr(T, S2) be the set of convex curves. We 
will use f : T → S2 to emphasize the role of f as an embedding function, and use � = f (T) only for its image. Let 
f : T → S2 be a simple closed curve enclosing a strictly convex domain Q, p be a nonsymmetric periodic point of the 
billiard map F with period n = |O(p)| ≥ 3. Let Fkp = (sk, θk), and {y1, . . . , yt } ⊂ � be the set of reflections of O(p)

on �. Suppose p has positive defect: d(p) = n − t > 0, and (yw(1), . . . , yw(n)) be the ordered reflection sequence of 
O(p). This gives rise to an onto map w : {1, . . . , n} �→ {1, . . . , t}. Such a map w is said to be the pattern of the orbit 
O(p). Without loss of generality we assume w(1) = 1 and {1 ≤ j ≤ n : w(j) = 1} = {j1, . . . , jr} (with j1 = 1) for 
some r ≥ 2.

Now let O(p) be a symmetric periodic orbit of period n. Then n = 2m is an even number, and there are exactly two 
reflections of right angle with �. Suppose p has positive defect, and t be the number of distinct reflection points on �. 
Let w : {1, . . . , m, m +1} → {1, . . . , t} be the pattern of O(p) such that yw(1) and yw(m+1) are the two reflection points 
on � with right angle. Note that w(1) = w(m + 1). We first study the nonsymmetric case in details. The symmetric 
case need some minor modifications, and will be given at the end of the proof.

Now we generalize above notations to any closed path of type w on S2. Let t ≥ 3 be given. Then a map w : Z →
{1, . . . , t} is said to be of period n if w(k + n) = w(k) for all k; is said to be admissible if w(k) = w(k + 1) for all k. 
There are only finitely many admissible patterns of period n, and we will fix such a pattern from now. Let T(t) ⊂ T

t

be the set of points (s1, . . . , st ) with si = sj for all i = j . Then for each x ∈ T
(t) and y = f (t)(x), we have that {yw(k)}

is a closed path of type w.
Let y = (y1, . . . , yt ) be a collection of t distinct points on S2. Define the perimeter of the geodesic polygon with 

the ordered corners at {yw(k)} as

Hw(y) =
n∑

k=1

d(yw(k), yw(k+1)).

Similarly, given f : T → S2 and x ∈ T
(t), let Hw(f (t)x) be the perimeter of the corresponding geodesic polygon with 

corners (f (si)) and pattern w.
Let J 1(T, S2) be the 1-jet bundle, and J 1

t (T, S2) be the t -fold jet bundle. For each f ∈ Cr(T, S2), we have a 
section map jtf : x ∈ T

(t) �→ (jf (s1), . . . , jf (st )). Let Vw be the set of those τ = (jf1(s1), . . . , jft (st )) such that

(1) fj (sj ) = fi(si) for each j = i,
(2) f ′

i (si) = 0 for every i = 1, . . . , t , and
(3) the polygon generated by (f1(s1), . . . , ft (st )) is convex with t vertices.

Let α : J 1(T, S2) → T be the source map, and β : J 1(T, S2) → S2 be the target map, W := (αt )−1(T(t)) ∩ Vw . 
Clearly W is an open submanifold of J 1

t (T, S2). Given τ ∈ W , there are neighborhoods Ui ⊂ T of si and Vi ⊂ S2 of 
fi(Ui) with Ui ∩ Uj = ∅ and Vi ∩ Vj = ∅ whenever 1 ≤ i < j ≤ t , such that

� := W ∩
(

t∏
i=1

J 1(Ui,Vi)

)

is an open neighborhood of τ . Consider the coordinate map

θ : � �→
t∏

i=1

Ui × TVi
S2 �

s∏
i=1

Ui × Vi ×R
2,

with θ(τ ) = (u, v, A), where u = (u1, . . . , ut ) is the source of τ , v = (v1, . . . , vt ) is the target of τ , and A =(
f ′

1(u1), . . . , f
′
i (ui), . . . , f

′
t (ut )

) =
(

f ′
1,1(u1) . . . f ′

i,1(ui) . . . f ′
t,1(ut )

f ′ (u1) . . . f ′ (ui) . . . f ′ (ut )

)
.

1,2 i,1 t,2
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In the following we separate the role of s1 from sk , 2 ≤ k ≤ t . For each l = 1, . . . , r , let a = w(jl − 1) and 
b = w(jl + 1), and ηa be the tangent direction of the shortest geodesic from y1 to ya , and similarly define ηb. Let 
ty1 = f ′

1(u1) and ny1 be the unit tangent and normal directions at y1. Then we decompose ηa + ηb as

ηa + ηb = ξl(y)ty1 + ζl(y)ny1 ,

where ξl(y) = 〈ηa +ηb, ny1〉 and ζl(y) = 〈ηa +ηb, ty1〉. Then it follows from the basic properties of billiard maps that

(1a). ζl(y) = 0 if (yw(t))
n
t=1 is a periodic orbit;

(1b). ζl(y) = 0 if (ya, y1, yb) does not describe a reflection.
(2a). ∂skH ◦ f (t)(x) = 0 for orbit paths;
(2b). ∂skH ◦ f (t)(x) may not be zero for non-orbit paths.

Let �w ⊂ M be those τ = (jf1(s1), . . . , jft (st )) ∈ M so that ζl(y) = 0 for each 1 ≤ l ≤ r , and ∂skFw ◦
(f1, . . . , ft )(x) = 0 for each 2 ≤ k ≤ t . We first estimate the codimension of �w. Let τ ∈ �w ⊂ M be given, and 
θ : τ �→ (u, v, A) be the coordinate system around τ given as above. Define a function

K : θ(�) → R
r+t−1, χ �→ (φ1(χ), . . . , φr(χ);ψ2(χ), . . . ,ψt (χ)),

where

(1) φl : θ(�) → R, l = 1, . . . , r , is defined by

χ = (u,v,A) �→ ζl(y) = 〈ηa + ηb, ty1〉,
where a = w(jl − 1), b = w(jl + 1), and ty1 is the unit tangent direction along f1(u1).

(2) ψk : θ(�) → R, χ �→ 〈∇yk
H, tyk

〉, for each k = 2, . . . , t .

Note that K(τ ) = 0 for each τ ∈ �w ∩ �. We claim that K is a submersion at each point in �. The verification of 
the submersion is pretty simple for convex billiards: by pushing the point ya along the normal direction of fa(sa) (for 
a = w(jl − 1), while fixing all other yk , k = a), we see that φl changes linearly (since ty1 is fixed); by rotating the 
tangent direction tyk

of yk along fk(sk) (while fixing all yk) we see that ψk changes linearly (since ∇yk
F is a fixed 

nonzero vector); and all these variations are independent.
Therefore, the map K is a submersion at each point in �. So the codimension of �w in � ⊂ W is at least 

dim(Im(K)) = r + t − 1 ≥ t + 1, which is larger than dimT
(t) = t . Then by Multi-jet Transversality Theorem, we 

have that jtf ∩ �w = ∅ for a residual subset of convex tables. Similarly, we define �w′ for any n-periodic admissible 
pattern w′ : Z → {1, . . . , t}, and then for any t = 2, . . . , n − 1. This completes the proof for nonsymmetric periodic 
orbits.

For symmetric periodic orbits, the proof is almost the same. The only difference is that when a := w(jl − 1) =
w(jl + 1), and the collision from ya to y1 is at the right angle. In this case, we still have that φl changes linearly by 
pushing ya along the normal direction of fa(sa) (since ty1 is fixed). Then the rest of the proof is the same. Putting 
together these results, we get that, for a residual subset of convex tables, each periodic orbits with period n has zero 
defect. This completes the proof of the genericity of zero defect.

For the second part of Proposition 2.3, we note that in the proof given above, we used the property that each folding 
of the path at yw(k) is a reflection; but we did not use any property that {yw(k)} is on a single orbit. In particular, one 
can take the union of the two periodic orbits and then study the paths with that joint pattern. Therefore the same 
analysis applies to the case that two orbits have some common reflection point. Then we conclude that, there is a 
residual subset of convex tables, for which any two periodic orbits with no common geodesic segment has no common 
reflection point. However, note that the orbit obtained by the time-reversal of one orbit has exact the same geodesic 
segments, and this does not count as positive defects.
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