Local behavior of fractional p-minimizers
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1279-1299.

We extend the De Giorgi–Nash–Moser theory to nonlocal, possibly degenerate integro-differential operators.

DOI : 10.1016/j.anihpc.2015.04.003
Classification : 35D30, 35B45, 35B05, 35R05, 47G20, 60J75
Mots clés : Quasilinear nonlocal operators, Fractional Sobolev spaces, Hölder regularity, Caccioppoli estimates, Singular perturbations
@article{AIHPC_2016__33_5_1279_0,
     author = {Di Castro, Agnese and Kuusi, Tuomo and Palatucci, Giampiero},
     title = {Local behavior of fractional \protect\emph{p}-minimizers},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1279--1299},
     publisher = {Elsevier},
     volume = {33},
     number = {5},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.04.003},
     zbl = {1355.35192},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/}
}
TY  - JOUR
AU  - Di Castro, Agnese
AU  - Kuusi, Tuomo
AU  - Palatucci, Giampiero
TI  - Local behavior of fractional p-minimizers
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1279
EP  - 1299
VL  - 33
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/
DO  - 10.1016/j.anihpc.2015.04.003
LA  - en
ID  - AIHPC_2016__33_5_1279_0
ER  - 
%0 Journal Article
%A Di Castro, Agnese
%A Kuusi, Tuomo
%A Palatucci, Giampiero
%T Local behavior of fractional p-minimizers
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1279-1299
%V 33
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/
%R 10.1016/j.anihpc.2015.04.003
%G en
%F AIHPC_2016__33_5_1279_0
Di Castro, Agnese; Kuusi, Tuomo; Palatucci, Giampiero. Local behavior of fractional p-minimizers. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1279-1299. doi : 10.1016/j.anihpc.2015.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/

[1] Bjorland, C.; Caffarelli, L.; Figalli, A. Non-local gradient dependent operators, Adv. Math., Volume 230 (2012), pp. 1859–1894 | DOI | Zbl

[2] Brasco, L.; Parini, E. The second eigenvalue of the fractional p-Laplacian, 2015 http://cvgmt.sns.it/paper/2522/ (preprint, available at)

[3] Chambolle, A.; Lindgren, E.; Monneau, R. A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var., Volume 18 (2012), pp. 799–835 | DOI | Numdam | Zbl

[4] Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245–1260 | DOI | Zbl

[5] Da Lio, F.; Rivière, T. 3-commutators estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, Volume 4 (2011), pp. 149–190 | Zbl

[6] De Giorgi, E. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Volume 3 (1957), pp. 25–43 | Zbl

[7] Di Castro, A.; Kuusi, T.; Palatucci, G. Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014), pp. 1807–1836 | DOI | Zbl

[8] Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521–573 | DOI | Zbl

[9] Franzina, G.; Palatucci, G. Fractional p-eigenvalues, Riv. Mat. Univ. Parma, Volume 5 (2014) no. 2, pp. 315–328 | Zbl

[10] Kassmann, M. Analysis of symmetric Markov processes. A localization technique for non-local operators, Universität Bonn, 2007 (Habilitation thesis)

[11] Kassmann, M. The classical Harnack inequality fails for nonlocal operators, 2007 http://sfb611.iam.uni-bonn.de/publications.php?lang=de&pro=&order=number&page=15&pub=371 (SFB 611-preprint 360, available at)

[12] Kassmann, M. A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differ. Equ., Volume 34 (2009), pp. 1–21 | DOI | Zbl

[13] Kassmann, M. Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited, 2011 http://www.math.uni-bielefeld.de/sfb701/preprints/view/523 (preprint, available at)

[14] Kuusi, T.; Mingione, G.; Sire, Y. Nonlocal equations with measure data, Commun. Math. Phys., Volume 337 (2015) no. 3, pp. 1317–1368 | DOI | Zbl

[15] Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M. Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. (2015) (in press) | DOI

[16] Ishii, H.; Nakamura, G. A class of integral equations and approximation of p-Laplace equations, Calc. Var. Partial Differ. Equ., Volume 37 (2010), pp. 485–522 | DOI | Zbl

[17] Lindgren, E. Hölder estimates for viscosity solutions of equations of fractional p-Laplace type, 2014 (preprint, available at) | arXiv

[18] Lindgren, E.; Lindqvist, P. Fractional eigenvalues, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1–2, pp. 795–826 | Zbl

[19] Malý, J.; Ziemer, W.P. Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1997 | DOI | Zbl

[20] Mingione, G. Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differ. Equ., Volume 18 (2003) no. 4, pp. 373–400 | DOI | Zbl

[21] Mingione, G. The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 6 (2007), pp. 195–261 | Numdam | Zbl

[22] Mingione, G. Gradient potential estimates, J. Eur. Math. Soc., Volume 13 (2011), pp. 459–486 | Zbl

[23] Moser, J. On Harnack's theorem for elliptic differential equations, Commun. Pure Appl. Math., Volume 14 (1961), pp. 577–591 | DOI | Zbl

[24] Nash, J. Continuity of solutions of parabolic and elliptic equations, Am. J. Math., Volume 80 (1958), pp. 931–954 | DOI | Zbl

[25] Palatucci, G.; Pisante, A. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3–4, pp. 799–829 | Zbl

[26] Palatucci, G.; Savin, O.; Valdinoci, E. Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), Volume 192 (2013) no. 4, pp. 673–718 | DOI | Zbl

[27] G. Palatucci, A. Pisante, Y. Sire, Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), | DOI

[28] Savin, O.; Valdinoci, E. Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., Volume 43 (2011) no. 6, pp. 2675–2687 | DOI | Zbl

[29] Savin, O.; Valdinoci, E. Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl., Volume 101 (2014) no. 1, pp. 1–26 | DOI | Zbl

[30] Servadei, R.; Valdinoci, E. Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., Volume 58 (2014) no. 1, pp. 133–154 | Zbl

[31] Silvestre, L. Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., Volume 55 (2006) no. 3, pp. 1155–1174 | DOI | Zbl

Cité par Sources :