We study a class of symmetric critical points in a variational 2D Landau–de Gennes model where the state of nematic liquid crystals is described by symmetric traceless matrices. These critical points play the role of topological point defects carrying a degree for a nonzero integer k. We prove existence and study the qualitative behavior of these symmetric solutions. Our main result is the instability of critical points when .
@article{AIHPC_2016__33_4_1131_0, author = {Ignat, Radu and Nguyen, Luc and Slastikov, Valeriy and Zarnescu, Arghir}, title = {Instability of point defects in a two-dimensional nematic liquid crystal model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1131--1152}, publisher = {Elsevier}, volume = {33}, number = {4}, year = {2016}, doi = {10.1016/j.anihpc.2015.03.007}, zbl = {1351.82110}, mrnumber = {3519535}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.007/} }
TY - JOUR AU - Ignat, Radu AU - Nguyen, Luc AU - Slastikov, Valeriy AU - Zarnescu, Arghir TI - Instability of point defects in a two-dimensional nematic liquid crystal model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1131 EP - 1152 VL - 33 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.007/ DO - 10.1016/j.anihpc.2015.03.007 LA - en ID - AIHPC_2016__33_4_1131_0 ER -
%0 Journal Article %A Ignat, Radu %A Nguyen, Luc %A Slastikov, Valeriy %A Zarnescu, Arghir %T Instability of point defects in a two-dimensional nematic liquid crystal model %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1131-1152 %V 33 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.007/ %R 10.1016/j.anihpc.2015.03.007 %G en %F AIHPC_2016__33_4_1131_0
Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir. Instability of point defects in a two-dimensional nematic liquid crystal model. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 4, pp. 1131-1152. doi : 10.1016/j.anihpc.2015.03.007. http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.007/
[1] Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 795–826 | DOI | MR | Zbl
[2] Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders, Arch. Ration. Mech. Anal., Volume 118 (1992) no. 2, pp. 149–168 | DOI | MR | Zbl
[3] Ginzburg–Landau Vortices, Prog. Nonlinear Differ. Equ. Appl., vol. 13, Birkhäuser Boston Inc., Boston, MA, 1994 | MR | Zbl
[4] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649–705 | DOI | MR | Zbl
[5] Biaxiality in the asymptotic analysis of a 2-d Landau–de Gennes model for liquid crystals, ESAIM Control Optim. Calc. Var., Volume 21 (2015) no. 1, pp. 101–137 | DOI | Numdam | MR | Zbl
[6] The structure and energetics of defects in liquid crystals, Adv. Phys., Volume 35 (1986), pp. 507–596 | DOI
[7] Non-singular disclinations of strength in nematics, J. Phys., Volume 33 (1972), pp. 591–598 | DOI
[8] The Physics of Liquid Crystals, Oxford University Press, Oxford, 1995
[9] Minimality and nondegeneracy of degree-one Ginzburg–Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., Volume 30 (2004), pp. 1511–1527 | MR | Zbl
[10] Profiles of point defects in two dimensions in Landau–de Gennes theory | arXiv
[11] A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types, J. Eur. Math. Soc., Volume 16 (2014) no. 7, pp. 1377–1422 | DOI | MR | Zbl
[12] Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., Volume 113 (1990) no. 2, pp. 97–120 | DOI | MR | Zbl
[13] On spatial variations of nematic ordering, Phys. D, Volume 237 (2008) no. 20, pp. 2577–2586 | DOI | MR | Zbl
[14] Vortices in two-dimensional nematics, Commun. Math. Sci., Volume 7 (2009) no. 4, pp. 917–938 | DOI | MR | Zbl
[15] On the theory of liquid crystals, Discuss. Faraday Soc., Volume 25 (1958), pp. 19–28 | DOI
[16] On minimizers of a Landau–de Gennes energy functional on planar domains, Arch. Ration. Mech. Anal., Volume 213 (2014), pp. 447–490 | DOI | MR | Zbl
[17] Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg–Landau, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 11 (1994) no. 4, pp. 427–440 | Numdam | MR | Zbl
[18] On the disclination lines of nematic liquid crystals, 2014 | arXiv | MR | Zbl
[19] Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 13–14, pp. 533–537 | Zbl
[20] Uniqueness results for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3390–3425 | DOI | Zbl
[21] Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 633–673 | DOI | Zbl
[22] A compactness result for Landau state in thin-film micromagnetics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 2, pp. 247–282 | DOI | Numdam | Zbl
[23] Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media, John Wiley & Sons, New York, 1983
[24] Topological point defects in nematic liquid crystals, Philos. Mag., Volume 86 (2006), pp. 4117–4137 | DOI
[25] Universal fine structure of nematic hedgehogs, J. Phys. A, Math. Gen., Volume 34 (2001) no. 4, pp. 829–838 | DOI | Zbl
[26] Biaxial torus around nematic point defects, Phys. Rev. E, Volume 60 (1999) no. 2, pp. 1858–1866 | DOI
[27] Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 1, pp. 227–280 | DOI | Zbl
[28] The diverse world of liquid crystals, Phys. Today, Volume 60 (2007), pp. 54–60 | DOI
Cited by Sources: