Global bifurcation theory for periodic traveling interfacial gravity–capillary waves
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1081-1101.

We consider the global bifurcation problem for spatially periodic traveling waves for two-dimensional gravity–capillary vortex sheets. The two fluids have arbitrary constant, non-negative densities (not both zero), the gravity parameter can be positive, negative, or zero, and the surface tension parameter is positive. Thus, included in the parameter set are the cases of pure capillary water waves and gravity–capillary water waves. Our choice of coordinates allows for the possibility that the fluid interface is not a graph over the horizontal. We use a technical reformulation which converts the traveling wave equations into a system of the form “identity plus compact.” Rabinowitz' global bifurcation theorem is applied and the final conclusion is the existence of either a closed loop of solutions, or an unbounded set of nontrivial traveling wave solutions which contains waves which may move arbitrarily fast, become arbitrarily long, form singularities in the vorticity or curvature, or whose interfaces self-intersect.

DOI : 10.1016/j.anihpc.2015.03.005
Mots clés : Global bifurcation, Surface tension, Traveling wave, Interfacial flow, Water wave
@article{AIHPC_2016__33_4_1081_0,
     author = {Ambrose, David M. and Strauss, Walter A. and Wright, J. Douglas},
     title = {Global bifurcation theory for periodic traveling interfacial gravity{\textendash}capillary waves},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1081--1101},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.005},
     zbl = {1383.35145},
     mrnumber = {3519533},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.005/}
}
TY  - JOUR
AU  - Ambrose, David M.
AU  - Strauss, Walter A.
AU  - Wright, J. Douglas
TI  - Global bifurcation theory for periodic traveling interfacial gravity–capillary waves
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1081
EP  - 1101
VL  - 33
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.005/
DO  - 10.1016/j.anihpc.2015.03.005
LA  - en
ID  - AIHPC_2016__33_4_1081_0
ER  - 
%0 Journal Article
%A Ambrose, David M.
%A Strauss, Walter A.
%A Wright, J. Douglas
%T Global bifurcation theory for periodic traveling interfacial gravity–capillary waves
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1081-1101
%V 33
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.005/
%R 10.1016/j.anihpc.2015.03.005
%G en
%F AIHPC_2016__33_4_1081_0
Ambrose, David M.; Strauss, Walter A.; Wright, J. Douglas. Global bifurcation theory for periodic traveling interfacial gravity–capillary waves. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1081-1101. doi : 10.1016/j.anihpc.2015.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.005/

[1] Ablowitz, M.J.; Fokas, A.S. Complex Variables: Introduction and Applications, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 1997 | MR | Zbl

[2] Akers, B.; Ambrose, D.M.; Wright, J.D. Traveling waves from the arclength parameterization: vortex sheets with surface tension, Interfaces Free Bound., Volume 15 (2013) no. 3, pp. 359–380 | DOI | MR | Zbl

[3] B.F. Akers, D.M. Ambrose, K. Pond, J.D. Wright, Internal capillary gravity waves, 2015, in preparation. | MR

[4] Akers, B.F.; Ambrose, D.M.; Wright, J.D. Gravity perturbed Crapper waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 470 (2014) no. 2161 (20130526, 14 pp) | MR | Zbl

[5] Ambrose, D.M. Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal., Volume 35 (2003) no. 1, pp. 211–244 (electronic) | DOI | MR | Zbl

[6] Ambrose, D.M.; Masmoudi, N. Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., Volume 5 (2007) no. 2, pp. 391–430 | DOI | MR | Zbl

[7] Amick, C.J.; Turner, R.E.L. A global theory of internal solitary waves in two-fluid systems, Trans. Am. Math. Soc., Volume 298 (1986) no. 2, pp. 431–484 | DOI | MR | Zbl

[8] Amick, C.J.; Turner, R.E.L. Small internal waves in two-fluid systems, Arch. Ration. Mech. Anal., Volume 108 (1989) no. 2, pp. 111–139 | DOI | MR | Zbl

[9] Beale, J.T.; Hou, T.Y.; Lowengrub, J.S. Growth rates for the linearized motion of fluid interfaces away from equilibrium, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1269–1301 | DOI | MR | Zbl

[10] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Gomez-Serrano, J. Finite time singularities for water waves with surface tension, J. Math. Phys., Volume 53 (2012) no. 11 | DOI | MR | Zbl

[11] Constantin, A.; Strauss, W. Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., Volume 57 (2004) no. 4, pp. 481–527 | DOI | MR | Zbl

[12] A. Constantin, W. Strauss, E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, preprint. | MR

[13] Coutand, D.; Shkoller, S. On the impossibility of finite-time splash singularities for vortex sheets, 2014 (preprint) | arXiv | MR | Zbl

[14] Crapper, G.D. An exact solution for progressive capillary waves of arbitrary amplitude, J. Fluid Mech., Volume 2 (1957), pp. 532–540 | DOI | MR | Zbl

[15] P. de Boeck, Existence of capillary–gravity waves that are perturbations of Crapper's waves, preprint.

[16] P. de Boeck, Global bifurcation for steady finite-depth capillary–gravity waves with constant vorticity, preprint.

[17] Fefferman, C.; Ionescu, A.D.; Lie, V. On the absence of “splash” singularities in the case of two-fluid interfaces, 2013 (preprint) | arXiv | MR

[18] Germain, P.; Masmoudi, N.; Shatah, J. Global existence for capillary water waves, Commun. Pure Appl. Math., Volume 68 (2014), pp. 625–687 | MR

[19] Hou, T.Y.; Lowengrub, J.S.; Shelley, M.J. Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys., Volume 114 (1994) no. 2, pp. 312–338 | MR | Zbl

[20] Hou, T.Y.; Lowengrub, J.S.; Shelley, M.J. The long-time motion of vortex sheets with surface tension, Phys. Fluids, Volume 9 (1997) no. 7, pp. 1933–1954 | MR | Zbl

[21] Hur, V.M. No solitary waves exist on 2D deep water, Nonlinearity, Volume 25 (2012) no. 12, pp. 3301–3312 | MR | Zbl

[22] Ionescu, A.D.; Pusateri, F. Global regularity for 2d water waves with surface tension, 2014 (preprint) | arXiv | MR

[23] Kielhöfer, H. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, Appl. Math. Sci., vol. 156, Springer, New York, 2012 | MR | Zbl

[24] Kinnersley, W. Exact large amplitude capillary waves on sheets of fluid, J. Fluid Mech., Volume 77 (1976), pp. 229 | DOI | MR | Zbl

[25] Majda, Andrew J.; Bertozzi, Andrea L. Vorticity and Incompressible Flow, Cambridge Texts Appl. Math., vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[26] Matioc, A.-V. Steady internal water waves with a critical layer bounded by the wave surface, J. Nonlinear Math. Phys., Volume 19 (2012) no. 1 (1250008, 21 pp) | MR | Zbl

[27] Matioc, B.-V. Global bifurcation for water waves with capillary effects and constant vorticity, Monatshefte Math., Volume 174 (2014) no. 3, pp. 459–475 | MR | Zbl

[28] Muskhelishvili, N.I. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics, Dover Publications, Inc., New York, 1992 translated from the second (1946) Russian edition and with a preface by J.R.M. Radok, corrected reprint of the 1953 English translation | MR | Zbl

[29] Rabinowitz, P.H. Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487–513 | DOI | MR | Zbl

[30] Saffman, P.G. Vortex Dynamics, Camb. Monogr. Mech. Appl. Math., Cambridge University Press, New York, 1992 | MR | Zbl

[31] Toland, J.F. On a pseudo-differential equation for Stokes waves, Arch. Ration. Mech. Anal., Volume 162 (2002) no. 2, pp. 179–189 | DOI | MR | Zbl

[32] Walsh, S. Steady stratified periodic gravity waves with surface tension II: global bifurcation, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 8, pp. 3287–3315 | MR | Zbl

Cité par Sources :