We prove sharp Hölder continuity and an estimate of rupture sets for sequences of solutions of the following nonlinear problem with negative exponent
@article{AIHPC_2016__33_1_221_0, author = {D\'avila, Juan and Wang, Kelei and Wei, Juncheng}, title = {Qualitative analysis of rupture solutions for a {MEMS} problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {221--242}, publisher = {Elsevier}, volume = {33}, number = {1}, year = {2016}, doi = {10.1016/j.anihpc.2014.09.009}, mrnumber = {3436432}, zbl = {1350.35093}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.009/} }
TY - JOUR AU - Dávila, Juan AU - Wang, Kelei AU - Wei, Juncheng TI - Qualitative analysis of rupture solutions for a MEMS problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 221 EP - 242 VL - 33 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.009/ DO - 10.1016/j.anihpc.2014.09.009 LA - en ID - AIHPC_2016__33_1_221_0 ER -
%0 Journal Article %A Dávila, Juan %A Wang, Kelei %A Wei, Juncheng %T Qualitative analysis of rupture solutions for a MEMS problem %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 221-242 %V 33 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.009/ %R 10.1016/j.anihpc.2014.09.009 %G en %F AIHPC_2016__33_1_221_0
Dávila, Juan; Wang, Kelei; Wei, Juncheng. Qualitative analysis of rupture solutions for a MEMS problem. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 1, pp. 221-242. doi : 10.1016/j.anihpc.2014.09.009. http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.009/
[1] On the singular set of stationary harmonic maps, Manuscr. Math., Volume 78 (1993) no. 4, pp. 417–443 | MR | Zbl
[2] The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998) no. 4–5, pp. 383–402 | MR | Zbl
[3] Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Am. Math. Soc., Volume 21 (2008), pp. 847–862 | DOI | MR | Zbl
[4] Hausdorff dimension of ruptures sets and removable singularities, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 1–2, pp. 27–32 | MR | Zbl
[5] Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math., Volume 98 (2006), pp. 349–396 | DOI | MR | Zbl
[6] Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1731–1768 | DOI | MR | Zbl
[7] Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lect. Notes Math., vol. 20, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2010 | DOI | MR | Zbl
[8] Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 116 (1991) no. 2, pp. 101–113 | DOI | MR | Zbl
[9] Monotonicity properties of variational integrals, weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245–268 | DOI | MR | Zbl
[10] Minimal Surfaces and Functions of Bounded Variation, Springer Monogr. Math., vol. 80, Birkhäuser, 1984 | MR | Zbl
[11] Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscr. Math., Volume 120 (2006) no. 2, pp. 193–209 | MR | Zbl
[12] Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity, Commun. Pure Appl. Anal., Volume 7 (2008) no. 4, pp. 765–786 | MR | Zbl
[13] Zero set of Sobolev functions with negative power of integrability, Chin. Ann. Math., Ser. B, Volume 25 (2004) no. 1, pp. 65–72 | DOI | MR | Zbl
[14] Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., Volume 254 (2008) no. 4, pp. 1058–1087 | MR | Zbl
[15] Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., Volume 63 (2010) no. 3, pp. 267–302 | DOI | MR | Zbl
[16] Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscr. Math., Volume 79 (1993) no. 2, pp. 161–172 | MR | Zbl
[17] A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 1–17 | DOI | MR | Zbl
[18] Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003 | MR | Zbl
[19] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487–513 | DOI | MR | Zbl
[20] Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983 | MR | Zbl
Cited by Sources: