Stochastically symplectic maps and their applications to the Navier–Stokes equation
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 1, pp. 1-22.

Poincaré's invariance principle for Hamiltonian flows implies Kelvin's principle for solution to Incompressible Euler equation. Constantin–Iyer Circulation Theorem offers a stochastic analog of Kelvin's principle for Navier–Stokes equation. Weakly symplectic diffusions are defined to produce stochastically symplectic flows in a systematic way. With the aid of symplectic diffusions, we produce a family of martigales associated with solutions to Navier–Stokes equation that in turn can be used to prove Constantin–Iyer Circulation Theorem. We also review some basic facts in symplectic and contact geometry and their applications to Euler equation.

DOI: 10.1016/j.anihpc.2014.09.001
Keywords: Symplectic geometry, Incompressible Euler equation, Navier–Stokes equation, Diffusions, Stochastic differential equation
@article{AIHPC_2016__33_1_1_0,
     author = {Rezakhanlou, Fraydoun},
     title = {Stochastically symplectic maps and their applications to the {Navier{\textendash}Stokes} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--22},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.001},
     mrnumber = {3436425},
     zbl = {1330.53103},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.001/}
}
TY  - JOUR
AU  - Rezakhanlou, Fraydoun
TI  - Stochastically symplectic maps and their applications to the Navier–Stokes equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1
EP  - 22
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.001/
DO  - 10.1016/j.anihpc.2014.09.001
LA  - en
ID  - AIHPC_2016__33_1_1_0
ER  - 
%0 Journal Article
%A Rezakhanlou, Fraydoun
%T Stochastically symplectic maps and their applications to the Navier–Stokes equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1-22
%V 33
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.001/
%R 10.1016/j.anihpc.2014.09.001
%G en
%F AIHPC_2016__33_1_1_0
Rezakhanlou, Fraydoun. Stochastically symplectic maps and their applications to the Navier–Stokes equation. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2014.09.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.001/

[1] Bragg, S.L.; Hawthorne, W.R. Some exact solutions of the flow through annular cascade actuator discs, J. Aeronaut. Sci., Volume 17 (1950), pp. 243–249 | DOI | MR

[2] Constantin, P. Euler equations, Navier–Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lect. Notes Math., vol. 1871, Springer, Berlin, 2006, pp. 1–43 | DOI | MR | Zbl

[3] Constantin, P.; Iyer, G. A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., Volume LXI (2008), pp. 330–345 | MR | Zbl

[4] Deng, J.; Hou, T.Y.; Yu, X. A level set formulation for the 3D incompressible Euler equations, Methods Appl. Anal., Volume 12 (2005) no. 4, pp. 427–440 | DOI | MR | Zbl

[5] Eliashberg, Y. Classification of contact structures on R3 , Int. Math. Res. Not., Volume 3 (1993), pp. 87–91 | MR | Zbl

[6] Eyink, G.L. Turbulent diffusion of lines and circulations, Phys. Lett. A, Volume 368 (2007), pp. 486–490 | DOI

[7] Eyink, G.L. A stochastic least-action principle for the incompressible Navier–Stokes equation, Physica D, Volume 239 (2010), pp. 1236–1240 | DOI | MR | Zbl

[8] Geiges, H. An Introduction to Contact Topology, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl

[9] Gromov, M. Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307–347 | DOI | MR | Zbl

[10] Hofer, H.; Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Verlag, Basel, 2011 | DOI | MR | Zbl

[11] Kunita, H.; Williams, D. On the decomposition of solutions of stochastic differential equations, Stochastic Integrals, Lect. Notes Math., vol. 851, Springer-Verlag, Berlin, Heidelberg, New York, 1981 | DOI | MR | Zbl

[12] Kunita, H. On backward stochastic differential equations, Stochastica, Volume 6 (1982), pp. 293–313 | MR | Zbl

[13] Kunita, H. Stochastic Flows and Stochastic Differential Equations, Cambridge university Press, Cambridge, 1990 | MR | Zbl

[14] Ohkitani, K. A geometrical study of 3D incompressible Euler flows with Clebsch potentials—a long-lived Euler flow and its power-law energy spectrum, Physica D, Volume 237 (2008) no. 14–17, pp. 2020–2027 | MR | Zbl

[15] Rezakhanlou, F. Regular flows for diffusions with rough drifts | arXiv

[16] Rezakhanlou, F. Lectures on symplectic geometry www.math.berkeley.edu/rezakhan

[17] Rogers, L.C.G.; Williams, D. Diffusions, Markov Processes, and Martingales, Cambridge University Press, Cambridge, 2000 (vol. 2. Itô calculus) | MR | Zbl

[18] Viterbo, C. Metric and isoperimetric problems in symplectic geometry, J. Am. Math. Soc., Volume 13 (2000) no. 2, pp. 411–431 | DOI | MR | Zbl

Cited by Sources: