We consider immersions admitting uniform representations as a λ-Lipschitz graph. In codimension 1, we show compactness for such immersions for arbitrary fixed and uniformly bounded volume. The same result is shown in arbitrary codimension for .
@article{AIHPC_2012__29_4_545_0, author = {Breuning, Patrick}, title = {Compactness of immersions with local {Lipschitz} representation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {545--572}, publisher = {Elsevier}, volume = {29}, number = {4}, year = {2012}, doi = {10.1016/j.anihpc.2012.02.001}, mrnumber = {2948288}, zbl = {1254.53010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/} }
TY - JOUR AU - Breuning, Patrick TI - Compactness of immersions with local Lipschitz representation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 545 EP - 572 VL - 29 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/ DO - 10.1016/j.anihpc.2012.02.001 LA - en ID - AIHPC_2012__29_4_545_0 ER -
%0 Journal Article %A Breuning, Patrick %T Compactness of immersions with local Lipschitz representation %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 545-572 %V 29 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/ %R 10.1016/j.anihpc.2012.02.001 %G en %F AIHPC_2012__29_4_545_0
Breuning, Patrick. Compactness of immersions with local Lipschitz representation. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 545-572. doi : 10.1016/j.anihpc.2012.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/
[1] Lineare Funktionalanalysis, Springer, Berlin, Heidelberg (2002)
,[2] Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys 46 no. 2 (1991), 45-95 | MR | Zbl
, ,[3] P. Breuning, Immersions with local Lipschitz representation, dissertation, Freiburg, 2011.
[4] Immersions with bounded second fundamental form, arXiv:1201.4562v1 (2011) | MR
,[5] Introduction to Differential Topology, Cambridge University Press, New York (1982) | MR
, ,[6] Immersions with bounded curvature, Geom. Dedicata 33 (1990), 153-161 | MR | Zbl
,[7] On hypersurfaces in with integral bounds on curvature, J. Geom. Anal. 11 (2000), 17-41 | MR
,[8] Riemannsche Geometrie im Großen, Lecture Notes in Math. vol. 55, Springer, Berlin, Heidelberg, New York (1968) | MR | Zbl
, , ,[9] How to conjugate -close group actions, Math. Z. 132 (1973), 11-20 | EuDML | MR | Zbl
, ,[10] Differential Topology, Grad. Texts in Math. vol. 33, Springer, New York (1976) | MR | Zbl
,[11] Riemannian Geometry and Geometric Analysis, Springer, Berlin, Heidelberg (2002) | MR | Zbl
,[12] Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 277-296 | MR | Zbl
, ,[13] Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541 | MR | Zbl
,[14] A compactness theorem for surfaces with -bounded second fundamental form, Math. Ann. 270 (1985), 223-234 | EuDML | MR | Zbl
,[15] Introduction to Smooth Manifolds, Grad. Texts in Math. vol. 218, Springer, New York (2003) | MR
,[16] Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten, Math. Z. 76 (1961), 334-366 | EuDML | MR | Zbl
,[17] Sectional curvatures of Grassmann manifolds, Proc. Natl. Acad. Sci. USA 60 (1968), 75-79 | MR | Zbl
,Cited by Sources: