Compactness of immersions with local Lipschitz representation
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 545-572.

We consider immersions admitting uniform representations as a λ-Lipschitz graph. In codimension 1, we show compactness for such immersions for arbitrary fixed λ< and uniformly bounded volume. The same result is shown in arbitrary codimension for λ1 4.

@article{AIHPC_2012__29_4_545_0,
     author = {Breuning, Patrick},
     title = {Compactness of immersions with local {Lipschitz} representation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {545--572},
     publisher = {Elsevier},
     volume = {29},
     number = {4},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.02.001},
     mrnumber = {2948288},
     zbl = {1254.53010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/}
}
TY  - JOUR
AU  - Breuning, Patrick
TI  - Compactness of immersions with local Lipschitz representation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 545
EP  - 572
VL  - 29
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/
DO  - 10.1016/j.anihpc.2012.02.001
LA  - en
ID  - AIHPC_2012__29_4_545_0
ER  - 
%0 Journal Article
%A Breuning, Patrick
%T Compactness of immersions with local Lipschitz representation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 545-572
%V 29
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/
%R 10.1016/j.anihpc.2012.02.001
%G en
%F AIHPC_2012__29_4_545_0
Breuning, Patrick. Compactness of immersions with local Lipschitz representation. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 545-572. doi : 10.1016/j.anihpc.2012.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/

[1] H.W. Alt, Lineare Funktionalanalysis, Springer, Berlin, Heidelberg (2002)

[2] A.A. Borisenko, Yu.A. Nikolaevskii, Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys 46 no. 2 (1991), 45-95 | MR | Zbl

[3] P. Breuning, Immersions with local Lipschitz representation, dissertation, Freiburg, 2011.

[4] P. Breuning, Immersions with bounded second fundamental form, arXiv:1201.4562v1 (2011) | MR

[5] T. Bröcker, K. Jänich, Introduction to Differential Topology, Cambridge University Press, New York (1982) | MR

[6] K. Corlette, Immersions with bounded curvature, Geom. Dedicata 33 (1990), 153-161 | MR | Zbl

[7] S. Delladio, On hypersurfaces in R n+1 with integral bounds on curvature, J. Geom. Anal. 11 (2000), 17-41 | MR

[8] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Großen, Lecture Notes in Math. vol. 55, Springer, Berlin, Heidelberg, New York (1968) | MR | Zbl

[9] K. Grove, H. Karcher, How to conjugate C 1 -close group actions, Math. Z. 132 (1973), 11-20 | EuDML | MR | Zbl

[10] M.W. Hirsch, Differential Topology, Grad. Texts in Math. vol. 33, Springer, New York (1976) | MR | Zbl

[11] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, Heidelberg (2002) | MR | Zbl

[12] J. Jost, Y.L. Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 277-296 | MR | Zbl

[13] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541 | MR | Zbl

[14] J. Langer, A compactness theorem for surfaces with L p -bounded second fundamental form, Math. Ann. 270 (1985), 223-234 | EuDML | MR | Zbl

[15] J.M. Lee, Introduction to Smooth Manifolds, Grad. Texts in Math. vol. 218, Springer, New York (2003) | MR

[16] K. Leichtweiss, Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten, Math. Z. 76 (1961), 334-366 | EuDML | MR | Zbl

[17] Y.-C. Wong, Sectional curvatures of Grassmann manifolds, Proc. Natl. Acad. Sci. USA 60 (1968), 75-79 | MR | Zbl

Cited by Sources: