For a one-phase free boundary problem involving a fractional Laplacian, we prove that “flat free boundaries” are . We recover the regularity results of Caffarelli for viscosity solutions of the classical Bernoulli-type free boundary problem with the standard Laplacian.
@article{AIHPC_2012__29_3_335_0, author = {De Silva, D. and Roquejoffre, J.M.}, title = {Regularity in a one-phase free boundary problem for the fractional {Laplacian}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {335--367}, publisher = {Elsevier}, volume = {29}, number = {3}, year = {2012}, doi = {10.1016/j.anihpc.2011.11.003}, zbl = {1251.35178}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.11.003/} }
TY - JOUR AU - De Silva, D. AU - Roquejoffre, J.M. TI - Regularity in a one-phase free boundary problem for the fractional Laplacian JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 335 EP - 367 VL - 29 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.11.003/ DO - 10.1016/j.anihpc.2011.11.003 LA - en ID - AIHPC_2012__29_3_335_0 ER -
%0 Journal Article %A De Silva, D. %A Roquejoffre, J.M. %T Regularity in a one-phase free boundary problem for the fractional Laplacian %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 335-367 %V 29 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.11.003/ %R 10.1016/j.anihpc.2011.11.003 %G en %F AIHPC_2012__29_3_335_0
De Silva, D.; Roquejoffre, J.M. Regularity in a one-phase free boundary problem for the fractional Laplacian. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 3, pp. 335-367. doi : 10.1016/j.anihpc.2011.11.003. http://www.numdam.org/articles/10.1016/j.anihpc.2011.11.003/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 | EuDML | Zbl
, ,[2] A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are , Rev. Mat. Iberoam. 3 no. 2 (1987), 139-162 | EuDML | Zbl
,[3] A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 no. 1 (1989), 55-78 | Zbl
,[4] A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 15 no. 4 (1988), 583-602 | EuDML | Numdam | Zbl
,[5] Fully Nonlinear Elliptic Equations, Colloquium Publications vol. 43, Amer. Math. Soc., Providence, RI (1995) | Zbl
, ,[6] Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111-1144 | Zbl
, , ,[7] Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), 1151-1179 | EuDML | Zbl
, , ,[8] A Geometric Approach to Free Boundary Problems, Grad. Stud. Math. vol. 68, Amer. Math. Soc., Providence, RI (2005) | Zbl
, ,[9] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425-461 | Zbl
, , ,[10] An extension problem for the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260 | Zbl
, ,[11] A singular energy minimising free boundary, J. Reine Angew. Math. 635 (2009), 1-21 | Zbl
, ,[12] Free boundary regularity for a problem with right hand side, Interfaces Free Bound. 13 (2011), 223-238 | Zbl
,[13] Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations 32 (2007), 557-578 | Zbl
,[14] Compactness methods for certain degenerate elliptic equations, J. Differential Equations 107 (1994), 341-350 | Zbl
,Cited by Sources: