We provide isoperimetric Szegö–Weinberger type inequalities for the first nontrivial Neumann eigenvalue in Gauss space, where Ω is a possibly unbounded domain of . Our main result consists in showing that among all sets Ω of symmetric about the origin, having prescribed Gaussian measure, is maximum if and only if Ω is the Euclidean ball centered at the origin.
Keywords: Neumann eigenvalues, Symmetrization, Isoperimetric estimates
@article{AIHPC_2012__29_2_199_0, author = {Chiacchio, F. and Di Blasio, G.}, title = {Isoperimetric inequalities for the first {Neumann} eigenvalue in {Gauss} space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {199--216}, publisher = {Elsevier}, volume = {29}, number = {2}, year = {2012}, doi = {10.1016/j.anihpc.2011.10.002}, mrnumber = {2901194}, zbl = {1238.35072}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.002/} }
TY - JOUR AU - Chiacchio, F. AU - Di Blasio, G. TI - Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 199 EP - 216 VL - 29 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.002/ DO - 10.1016/j.anihpc.2011.10.002 LA - en ID - AIHPC_2012__29_2_199_0 ER -
%0 Journal Article %A Chiacchio, F. %A Di Blasio, G. %T Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 199-216 %V 29 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.002/ %R 10.1016/j.anihpc.2011.10.002 %G en %F AIHPC_2012__29_2_199_0
Chiacchio, F.; Di Blasio, G. Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 2, pp. 199-216. doi : 10.1016/j.anihpc.2011.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.002/
[1] General logarithmic Sobolev inequalities and Orlicz imbeddings, J. Funct. Anal. 34 (1979), 292-303 | MR | Zbl
,[2] Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry, Edinburgh, 1998, London Math. Soc. Lecture Note Ser. vol. 273, Cambridge Univ. Press, Cambridge (1999), 95-139 | MR | Zbl
,[3] Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature, J. Lond. Math. Soc. (2) 52 no. 2 (1995), 402-416 | Zbl
, ,[4] Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics vol. 7, Pitman (Advanced Publishing Program), Boston, MA, London (1980) | MR | Zbl
,[5] A second eigenvalue bound for the Dirichlet Schrödinger operator, Comm. Math. Phys. 267 no. 3 (2006), 741-755 | MR | Zbl
, ,[6] Isoperimetric estimates for the first eigenfunction of a class of linear elliptic problems, Z. Angew. Math. Phys. 58 no. 1 (2007), 37-52 | MR | Zbl
, , ,[7] Hardy type inequalities and Gaussian measure, Commun. Pure Appl. Anal. 6 no. 2 (2007), 411-428 | MR | Zbl
, , ,[8] Gaussian Measures, Mathematical Surveys and Monographs vol. 62, American Mathematical Society, Providence, RI (1998) | MR | Zbl
,[9] The Brunn–Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-211 | EuDML | MR | Zbl
,[10] On the cases of equality in Bobkovʼs inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), 1-18 | MR | Zbl
, ,[11] Lowest-eigenvalue inequalities, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math. vol. XXXVI, American Mathematical Society, Providence, RI (1980), 79-89 | MR | Zbl
,[12] Eigenvalues in Riemannian Geometry, Academic Press, New York (2001) | MR
,[13] On the existence of a solution in a domain identification problem, J. Math. Anal. Appl. 52 (1975), 189-289 | MR | Zbl
,[14] Equimeasurable Rearrangements of Functions, Queenʼs Papers in Pure and Applied Mathematics vol. 28, Queenʼs University (1971) | MR | Zbl
, ,[15] Optimal Gaussian Sobolev embeddings, J. Funct. Anal. 256 no. 11 (2009), 3588-3642 | MR | Zbl
, ,[16] Methods of Mathematical Physics, vols. I and II, Interscience Publishers, New York, London (1962) | MR | Zbl
, ,[17] Symmétrisation dans lʼspace de Gauss, Math. Scand. 53 (1983), 281-301 | EuDML | MR
,[18] Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes, Ann. Sci. Ec. Norm. Super. 17 (1984), 317-332 | EuDML | Numdam | MR | Zbl
,[19] F. Feo, M.R. Posteraro, Logarithmic Sobolev Trace inequalities, preprint, No. 34, 2010, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”. | MR
[20] Practical Quantum Mechanics, I, II, Die Grundlehren der mathematischen Wissenschaften Bände 177 und 178, Springer-Verlag, Berlin, New York (1971) | MR
,[21] Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 1061-1083 | MR | Zbl
,[22] Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser, Basel (2006) | MR | Zbl
,[23] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin) vol. 48, Springer-Verlag, Berlin (2005) | MR
, ,[24] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics vol. 1150, Springer-Verlag, New York (1985) | MR | Zbl
,[25] Symmetrization & Applications, Series in Analysis vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006) | MR | Zbl
,[26] A variational theorem for and its applications, J. Math. Phys. 31 (1952), 45-54 | MR | Zbl
, ,[27] Maximizing Neumann fundamental tones of triangles, J. Math. Phys. 50 no. 11 (2009), 112903 | MR | Zbl
, ,[28] Spherical Harmonics, Lecture Notes in Mathematics vol. 17, Springer-Verlag, Berlin, New York (1966) | MR | Zbl
,[29] A proof of a logarithmic Sobolev inequality, Calc. Var. Partial Differential Equations 1 no. 3 (1993), 237-242 | MR | Zbl
, ,[30] An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636 | MR | Zbl
,[31] Relative rearrangement on a measure space application to the regularity of weighted monotone rearrangement, I, II, Appl. Math. Lett. 6 (1993), 75-78 | MR
, ,[32] Extremal properties of half-spaces for spherically invariant measures, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14-24 | EuDML | MR
, ,[33] Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343-356 | MR | Zbl
,Cited by Sources: