An isoperimetric inequality for a nonlinear eigenvalue problem
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 1, pp. 21-34.

We prove an isoperimetric inequality of the Rayleigh–Faber–Krahn type for a nonlinear generalization of the first twisted Dirichlet eigenvalue, defined by

λ p,q (Ω)= inf {v L p (Ω) v L q (Ω) ,v0,vW 0 1,p (Ω), Ω|v| q-2 vdx=0}.
More precisely, we show that the minimizer among sets of given volume is the union of two equal balls.

On montre une inégalité isopérimétrique du type Rayleigh–Faber–Krahn pour une généralisation non-linéaire de la première valeur propre de Dirichlet torsadée, définie par

λ p,q (Ω)= inf {v L p (Ω) v L q (Ω) ,v0,vW 0 1,p (Ω), Ω|v| q-2 vdx=0}.
Plus précisément, on montre que le minimum parmi les ensembles de volume donné est lʼunion de deux boules égales.

DOI: 10.1016/j.anihpc.2011.08.001
Keywords: Shape optimization, Eigenvalues, Symmetrization, Euler equation, Shape derivative
@article{AIHPC_2012__29_1_21_0,
     author = {Croce, Gisella and Henrot, Antoine and Pisante, Giovanni},
     title = {An isoperimetric inequality for a nonlinear eigenvalue problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {21--34},
     publisher = {Elsevier},
     volume = {29},
     number = {1},
     year = {2012},
     doi = {10.1016/j.anihpc.2011.08.001},
     mrnumber = {2876245},
     zbl = {1243.49048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/}
}
TY  - JOUR
AU  - Croce, Gisella
AU  - Henrot, Antoine
AU  - Pisante, Giovanni
TI  - An isoperimetric inequality for a nonlinear eigenvalue problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 21
EP  - 34
VL  - 29
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/
DO  - 10.1016/j.anihpc.2011.08.001
LA  - en
ID  - AIHPC_2012__29_1_21_0
ER  - 
%0 Journal Article
%A Croce, Gisella
%A Henrot, Antoine
%A Pisante, Giovanni
%T An isoperimetric inequality for a nonlinear eigenvalue problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 21-34
%V 29
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/
%R 10.1016/j.anihpc.2011.08.001
%G en
%F AIHPC_2012__29_1_21_0
Croce, Gisella; Henrot, Antoine; Pisante, Giovanni. An isoperimetric inequality for a nonlinear eigenvalue problem. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 1, pp. 21-34. doi : 10.1016/j.anihpc.2011.08.001. http://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/

[1] L. Barbosa, P. Bérard, Eigenvalue and “twisted” eigenvalue problems, applications to cmc surfaces, J. Math. Pures Appl. (9) 79 no. 5 (2000), 427-450 | MR | Zbl

[2] M. Belloni, B. Kawohl, A symmetry problem related to Wirtingerʼs and Poincaréʼs inequality, J. Differential Equations 156 no. 1 (1999), 211-218 | MR | Zbl

[3] F. Brock, A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51 no. 3 (2002), 375-390 | MR | Zbl

[4] A.P. Buslaev, V.A. Kondratév, A.I. Nazarov, On a family of extremal problems and related properties of an integral, Mat. Zametki (64) 51 no. 3 (1998), 830-838 | MR

[5] G. Croce, B. Dacorogna, On a generalized Wirtinger inequality, Discrete Contin. Dyn. Syst. 9 no. 5 (2003), 1329-1341 | MR | Zbl

[6] B. Dacorogna, W. Gangbo, N. Subía, Sur une généralisation de lʼinégalité de Wirtinger, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 29-50 | EuDML | Numdam | MR | Zbl

[7] L. Damascelli, B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR | Zbl

[8] G. Dinca, F. Isaia, Generalized Pohozaev identity and a non-existence result for the p-laplacian: weak solutions, Adv. Differential Equations 14 no. 5–6 (2009), 497-540 | MR | Zbl

[9] B. Emamizadeh, M. Zivari-Rezapour, Monotonicity of the principal eigenvalue of the p-laplacian in an annulus, Proc. Amer. Math. Soc. 136 no. 5 (2008), 1725-1731 | MR | Zbl

[10] L. Erbe, M. Tang, Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 no. 2 (1997), 351-379 | MR | Zbl

[11] F. Farroni, R. Giova, T. Ricciardi, Best constant and extremals for a vector Poincaré inequality with weights, Sci. Math. Jpn. 71 no. 2 (2010), 111-126 | MR | Zbl

[12] B. Franchi, E. Lanconelli, J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in n , Adv. Math. 118 no. 2 (1996), 177-243 | MR | Zbl

[13] G. Franzina, P.D. Lamberti, Existence and uniqueness for a p-laplacian nonlinear eigenvalue problem, Electron. J. Differential Equations 26 (2010) | EuDML | MR | Zbl

[14] P. Freitas, A. Henrot, On the first twisted Dirichlet eigenvalue, Commun. Anal. Geom. 12 no. 5 (2004), 1083-1103 | MR | Zbl

[15] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) (2006) | MR | Zbl

[16] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006) | MR | Zbl

[17] A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin) vol. 48, Springer, Berlin (2005) | MR

[18] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics vol. 1150, Springer-Verlag, Berlin (1985) | MR | Zbl

[19] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dyn. Syst. 6 no. 3 (2000), 683-690 | MR | Zbl

[20] B. Kawohl, V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 no. 4 (2003), 659-667 | EuDML | MR | Zbl

[21] B. Kawohl, M. Lucia, S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 no. 4 (2007), 407-434 | MR | Zbl

[22] O.A. Ladyzhenskaya, N.N. Uralt´Seva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) | MR | Zbl

[23] A.I. Nazarov, On the symmetry of extremals in the weight embedding theorem, J. Math. Sci. (New York) 107 no. 3 (2001), 3841-3859 | MR | Zbl

[24] P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 no. 3 (1986), 681-703 | MR | Zbl

[25] J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2 no. 7–8 (1980), 649-687 | MR | Zbl

Cited by Sources: