@article{AIHPB_2006__42_5_535_0, author = {Engl\"ander, J\'anos and Pinsky, Ross G.}, title = {The compact support property for measure-valued processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {535--552}, publisher = {Elsevier}, volume = {42}, number = {5}, year = {2006}, doi = {10.1016/j.anihpb.2005.07.001}, mrnumber = {2259973}, zbl = {1104.60049}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.07.001/} }
TY - JOUR AU - Engländer, János AU - Pinsky, Ross G. TI - The compact support property for measure-valued processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 535 EP - 552 VL - 42 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.07.001/ DO - 10.1016/j.anihpb.2005.07.001 LA - en ID - AIHPB_2006__42_5_535_0 ER -
%0 Journal Article %A Engländer, János %A Pinsky, Ross G. %T The compact support property for measure-valued processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 535-552 %V 42 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2005.07.001/ %R 10.1016/j.anihpb.2005.07.001 %G en %F AIHPB_2006__42_5_535_0
Engländer, János; Pinsky, Ross G. The compact support property for measure-valued processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 5, pp. 535-552. doi : 10.1016/j.anihpb.2005.07.001. http://www.numdam.org/articles/10.1016/j.anihpb.2005.07.001/
[1] Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984) 111-149. | MR | Zbl
, ,[2] Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980) 1-6. | MR | Zbl
, ,[3] Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI-1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. | Zbl
,[4] Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields 83 (1989) 135-205. | MR | Zbl
, , ,[5] On hitting single points by a multidimensional diffusion, Stochastics Stochastics Rep. 65 (1998) 1-11. | MR | Zbl
,[6] A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields 89 (1991) 89-115. | MR | Zbl
,[7] Superprocesses and partial differential equations, Ann. Probab. 21 (1993) 1185-1262. | MR | Zbl
,[8] Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49 (1996) 125-176. | MR | Zbl
, ,[9] Criteria for the existence of positive solutions to the equation in for all - a new probabilistic approach, Positivity 4 (2000) 327-337. | Zbl
,[10] On the construction and support properties of measure-valued diffusions on with spatially dependent branching, Ann. Probab. 27 (1999) 684-730. | Zbl
, ,[11] Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form in , J. Differential Equations 192 (2003) 396-428. | Zbl
, ,[12] A super-stable motion with infinite mean branching, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 513-537. | Numdam | MR | Zbl
, ,[13] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. | MR | Zbl
,[14] Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. | MR | Zbl
,[15] R. Pinsky, Positive solutions of reaction diffusion equations with super-linear absorption: universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions, J. Differential Equations, in press. | MR | Zbl
[16] Support properties of super-Brownian motions with spatially dependent branching rate, Stochastic Process. Appl. 110 (2004) 19-44. | MR | Zbl
,[17] Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981) 225-242. | MR | Zbl
,Cited by Sources: