Mathematical Problems in Mechanics/Calculus of Variations
Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
Comptes Rendus. Mathématique, Volume 336 (2003) no. 8, pp. 697-702.

We show that the nonlinear bending theory of shells arises as a Γ-limit of three-dimensional nonlinear elasticity.

Nous montrons que la théorie non linéaire des coques en flexion émerge comme Γ-limite de la théorie de l'élasticité tridimensionelle.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00028-1
Friesecke, Gero 1; James, Richard D. 2; Giovanna Mora, Maria 3; Müller, Stefan 3

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2 Department of Aerospace Engineering and Mechanics, 107 Akerman Hall, University of Minnesota, Minneapolis, MN 55455, USA
3 Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
@article{CRMATH_2003__336_8_697_0,
     author = {Friesecke, Gero and James, Richard D. and Giovanna Mora, Maria and M\"uller, Stefan},
     title = {Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by {Gamma-convergence}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {336},
     number = {8},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00028-1},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00028-1/}
}
TY  - JOUR
AU  - Friesecke, Gero
AU  - James, Richard D.
AU  - Giovanna Mora, Maria
AU  - Müller, Stefan
TI  - Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 697
EP  - 702
VL  - 336
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00028-1/
DO  - 10.1016/S1631-073X(03)00028-1
LA  - en
ID  - CRMATH_2003__336_8_697_0
ER  - 
%0 Journal Article
%A Friesecke, Gero
%A James, Richard D.
%A Giovanna Mora, Maria
%A Müller, Stefan
%T Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
%J Comptes Rendus. Mathématique
%D 2003
%P 697-702
%V 336
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00028-1/
%R 10.1016/S1631-073X(03)00028-1
%G en
%F CRMATH_2003__336_8_697_0
Friesecke, Gero; James, Richard D.; Giovanna Mora, Maria; Müller, Stefan. Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. Comptes Rendus. Mathématique, Volume 336 (2003) no. 8, pp. 697-702. doi : 10.1016/S1631-073X(03)00028-1. http://www.numdam.org/articles/10.1016/S1631-073X(03)00028-1/

[1] Acerbi, E.; Buttazzo, G.; Percivale, D. A variational definition for the strain energy of an elastic string, J. Elasticity, Volume 25 (1991), pp. 137-148

[2] Antman, S.S. Nonlinear Problems of Elasticity, Springer, New York, 1995

[3] Ciarlet, P.G. Mathematical Elasticity, Vols. II and III, Elsevier, 1997 (2000)

[4] Fox, D.D.; Raoult, A.; Simo, J.C. A justification of properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199

[5] Friesecke, G.; James, R.D.; Müller, S. Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 173-178

[6] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[7] John, F. Rotation and strain, Comm. Pure Appl. Math., Volume 14 (1961), pp. 391-413

[8] Kirchhoff, G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-88

[9] LeDret, H.; Raoult, A. Le modèle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris Sér. I, Volume 317 (1993), pp. 221-226

[10] LeDret, H.; Raoult, A. The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578

[11] LeDret, H.; Raoult, A. The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84

[12] Pantz, O. Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Sér. I, Volume 332 (2001), pp. 587-592

Cited by Sources: