Numerical Analysis/Calculus of Variations
A penalty/Newton/conjugate gradient method for the solution of obstacle problems
[Sur une méthode de pénalité/Newton et gradient conjugué pour la résolution de problèmes d'obstacles]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 435-440.

Motivé par la recherche des solutions non négatives d'un système d'équations eiconales, avec conditions aux limites de Dirichlet, on étudie dans cette Note une méthode pour la résolution numérique de problèmes d'inéquations variationnelles paraboliques pour des ensembles convexes du type K={vvH 0 1 (Ω), vψ p.p. sur Ω}. La méthode numérique combine pénalité et algorithme de Newton, les problèmes linéarisés étant résolus par un algorithme de gradient conjugué qui demande à chaque iteration la résolution d'un problème linéaire pour un analogue discret de l'opérateur elliptique IμΔ avec μ>0. Les essais numériques montrent que la méthode ainsi obtenue a de bonnes propriétés de convergence, même pour des petites valeurs du paramètre de pénalité.

Motivated by the search for non-negative solutions of a system of Eikonal equations with Dirichlet boundary conditions, we discuss in this Note a method for the numerical solution of parabolic variational inequality problems for convex sets such as K={vvH 0 1 (Ω), vψ a.e. on Ω}. The numerical methodology combines penalty and Newton's method, the linearized problems being solved by a conjugate gradient algorithm requiring at each iteration the solution of a linear problem for a discrete analogue of the elliptic operator IμΔ. Numerical experiments show that the resulting method has good convergence properties, even for small values of the penalty parameter.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00025-6
Glowinski, Roland 1 ; Kuznetsov, Yuri A. 1 ; Pan, Tsorng-Whay 1

1 University of Houston, Department of Mathematics, Houston, TX 77204-3476, USA
@article{CRMATH_2003__336_5_435_0,
     author = {Glowinski, Roland and Kuznetsov, Yuri A. and Pan, Tsorng-Whay},
     title = {A {penalty/Newton/conjugate} gradient method for the solution of obstacle problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {435--440},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00025-6},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00025-6/}
}
TY  - JOUR
AU  - Glowinski, Roland
AU  - Kuznetsov, Yuri A.
AU  - Pan, Tsorng-Whay
TI  - A penalty/Newton/conjugate gradient method for the solution of obstacle problems
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 435
EP  - 440
VL  - 336
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00025-6/
DO  - 10.1016/S1631-073X(03)00025-6
LA  - en
ID  - CRMATH_2003__336_5_435_0
ER  - 
%0 Journal Article
%A Glowinski, Roland
%A Kuznetsov, Yuri A.
%A Pan, Tsorng-Whay
%T A penalty/Newton/conjugate gradient method for the solution of obstacle problems
%J Comptes Rendus. Mathématique
%D 2003
%P 435-440
%V 336
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00025-6/
%R 10.1016/S1631-073X(03)00025-6
%G en
%F CRMATH_2003__336_5_435_0
Glowinski, Roland; Kuznetsov, Yuri A.; Pan, Tsorng-Whay. A penalty/Newton/conjugate gradient method for the solution of obstacle problems. Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 435-440. doi : 10.1016/S1631-073X(03)00025-6. http://www.numdam.org/articles/10.1016/S1631-073X(03)00025-6/

[1] Carlsson, H.; Glowinski, R. Vibrations of Euler–Bernoulli beams with pointwise obstacles (Gatignol, R.; Soubbaramayer, eds.), Advances in Kinetic Theory and Continuum Mechanics, Springer-Verlag, Berlin, 1991, pp. 261-275

[2] Ciarlet, P.G. The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[3] Ciarlet, P.G. Basic error estimates for elliptic problems (Ciarlet, P.G.; Lions, J.-L., eds.), Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp. 17-352

[4] Dacorogna, B.; Glowinski, R.; Pan, T.-W. Numerical solution of a system of Eikonal equations, C. R. Acad. Sci. Paris, Sér. I, Volume 336 (2003)

[5] Dean, E.J.; Glowinski, R.; Kuo, Y.M.; Nasser, M.G. On the discretization of some second order in time differential equations. Applications to nonlinear wave problems (Balakrishnan, A.V., ed.), Computational Techniques in Identification and Control of Flexible Flight Structures, Optimization Software Inc., Los Angeles, 1990, pp. 199-246

[6] Duvaut, G.; Lions, J.-L. Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976

[7] Glowinski, R. Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

[8] Glowinski, R.; Lions, J.-L.; Tremolières, R. Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981

Cité par Sources :