An anomaly formula for Ray–Singer metrics on manifolds with boundary
Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 603-608.

We establish an anomaly formula for Ray–Singer metrics defined by a Hermitian metric on a flat vector bundle over a Riemannian manifold with boundary. We do not assume that the Hermitian metric on the flat vector bundle is flat, nor that the Riemannian metric has product structure near the boundary.

On annonce une formule d'anomalie pour les métriques de Ray–Singer d'un fibré plat F sur une variété à bord X . On ne suppose ni que la métrique sur F est plate, ni que la métrique sur X a une structure produit près du bord.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02496-2
Brüning, Jochen 1; Ma, Xiaonan 2

1 Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany
2 Centre de mathématiques, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2002__335_7_603_0,
     author = {Br\"uning, Jochen and Ma, Xiaonan},
     title = {An anomaly formula for {Ray{\textendash}Singer} metrics on manifolds with boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {335},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02496-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02496-2/}
}
TY  - JOUR
AU  - Brüning, Jochen
AU  - Ma, Xiaonan
TI  - An anomaly formula for Ray–Singer metrics on manifolds with boundary
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 603
EP  - 608
VL  - 335
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02496-2/
DO  - 10.1016/S1631-073X(02)02496-2
LA  - en
ID  - CRMATH_2002__335_7_603_0
ER  - 
%0 Journal Article
%A Brüning, Jochen
%A Ma, Xiaonan
%T An anomaly formula for Ray–Singer metrics on manifolds with boundary
%J Comptes Rendus. Mathématique
%D 2002
%P 603-608
%V 335
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02496-2/
%R 10.1016/S1631-073X(02)02496-2
%G en
%F CRMATH_2002__335_7_603_0
Brüning, Jochen; Ma, Xiaonan. An anomaly formula for Ray–Singer metrics on manifolds with boundary. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 603-608. doi : 10.1016/S1631-073X(02)02496-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02496-2/

[1] Bismut, J.-M.; Lebeau, G. Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297

[2] Bismut, J.-M.; Zhang, W. An Extension of a Theorem by Cheeger and Müller, Astérisque, 205, 1992

[3] Bismut, J.-M.; Zhang, W. Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994), pp. 136-212

[4] Bott, R.; Tu, L. Differential Forms in Algebraic Topology, Graduate Texts in Math., 82, Springer, New York, 1982

[5] J. Brüning, X. Ma, An anomaly formula for Ray–Singer metrics on manifolds with boundary, to appear

[6] Cheeger, J. Analytic torsion and the heat equation, Ann of Math., Volume 109 (1979), pp. 259-322

[7] Chern, S.S. On the curvatura integra in a Riemannian manifold, Ann. of Math., Volume 46 (1945), pp. 674-684

[8] Dai, X.; Fang, H. Analytic torsion and R-torsion for manifolds with boundary, Asian J. Math., Volume 4 (2000), pp. 695-714

[9] Lott, J.; Rothenberg, M. Analytic torsion for group actions, J. Differential Geom., Volume 34 (1991), pp. 431-481

[10] Lück, W. Analytic and topological torsion for manifolds with boundary and symmetry, J. Differential Geom., Volume 37 (1993), pp. 263-322

[11] Mathai, V.; Quillen, D. Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986), pp. 85-110

[12] Müller, W. Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math., Volume 28 (1978), pp. 233-305

[13] Müller, W. Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc., Volume 6 (1993), pp. 721-753

[14] Ray, D.B.; Singer, I.M. R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math., Volume 7 (1971), pp. 145-210

Cited by Sources: