On invertible substitutions with two fixed points
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 727-731.

Let ϕ be a primitive substitution on a two-letter alphabet {a,b} having two fixed points ξa and ξb. We show that the substitution ϕ is invertible if and only if one has ξa=abξ and ξb=baξ.

On considère une substitution primitive ϕ sur l'alphabet {a,b} ayant deux points fixes ξa et ξb (commençant respectivement par a et b). Nous montrons que la substitution ϕ est inversible si et seulement si l'on a ξa=abξ et ξb=baξ.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02235-5
Wen, Zhi-Xiong 1; Wen, Zhi-Ying 2; Wu, Jun 1

1 Nonlinear Science Center, Department of Mathematics, Wuhan University, Wuhan 430072, China
2 Department of Mathematics, Tsinghua University, Beijing 10084, China
@article{CRMATH_2002__334_9_727_0,
     author = {Wen, Zhi-Xiong and Wen, Zhi-Ying and Wu, Jun},
     title = {On invertible substitutions with two fixed points},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {727--731},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02235-5},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02235-5/}
}
TY  - JOUR
AU  - Wen, Zhi-Xiong
AU  - Wen, Zhi-Ying
AU  - Wu, Jun
TI  - On invertible substitutions with two fixed points
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 727
EP  - 731
VL  - 334
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02235-5/
DO  - 10.1016/S1631-073X(02)02235-5
LA  - en
ID  - CRMATH_2002__334_9_727_0
ER  - 
%0 Journal Article
%A Wen, Zhi-Xiong
%A Wen, Zhi-Ying
%A Wu, Jun
%T On invertible substitutions with two fixed points
%J Comptes Rendus. Mathématique
%D 2002
%P 727-731
%V 334
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02235-5/
%R 10.1016/S1631-073X(02)02235-5
%G en
%F CRMATH_2002__334_9_727_0
Wen, Zhi-Xiong; Wen, Zhi-Ying; Wu, Jun. On invertible substitutions with two fixed points. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 727-731. doi : 10.1016/S1631-073X(02)02235-5. http://www.numdam.org/articles/10.1016/S1631-073X(02)02235-5/

[1] Berstel J., Mot de Fibonacci, Séminaire d'informatique théorique, L.I.T.P., Paris, Année (1980/1981) 57–78

[2] Ei, H.; Ito, S. Decomposition theorem for invertible substitution, Osaka J. Math., Volume 34 (1998), pp. 821-834

[3] Mignosi F., Ph.D. thesis, L.I.T.P., 92.01

[4] Mignosi, F.; Séébold, P. Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux, Volume 5 (1993), pp. 221-233

[5] Nielsen, J. Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., Volume 78 (1918), pp. 385-397

[6] Séébold, P. Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., Volume 88 (1991), pp. 365-384

[7] Wen, Z.-X.; Wen, Z.-Y. Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris, Série I, Volume 318 (1994), pp. 299-304

[8] Wen, Z.-X.; Wen, Z.-Y. Some properties of the singular words of the Fibonacci word, European J. Combin., Volume 15 (1994), pp. 587-598

[9] Wen, Z.-X.; Wen, Z.-Y. Factor properties of infinite words generated by a class of invertible substitution, 5th Conference Formal Power Series and Algebraic Combinatorics, Florence, 1993, pp. 455-466

[10] Wen Z.-X., Wen Z.-Y., Wu J., Some properties of Fibonacci sequence, Preprint

Cited by Sources:

Supported by the Special Funds for Major State Basic Research Projects of China and Morningside Center of Mathematics (CAS).