Partially hyperbolic geodesic flows are Anosov
[Les flots géodésiques partiellement hyperboliques sont Anosov]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 585-590.

Considérons une action de ou sur un fibré vectoriel muni d'une struture symplectique par des applications linéaires préservant cette structure symplectique, et supposons que cette action possède une décomposition invariante faiblement dominée E=SU avec dimU=dimS. On montre alors que cette action est nécessairement hyperbolique.

We prove that if a or -action by symplectic linear maps on a symplectic vector bundle E has a weakly dominated invariant splitting E=SU with dimU=dimS, then the action is hyperbolic. In particular, contact and geodesic flows with a dominated splitting with dimS=dimU are Anosov.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02196-9
Contreras, Gonzalo 1

1 Cimat, PO box 402, 36.000 Guanajuato GTO, México, Mexique
@article{CRMATH_2002__334_7_585_0,
     author = {Contreras, Gonzalo},
     title = {Partially hyperbolic geodesic flows are {Anosov}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {585--590},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02196-9},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02196-9/}
}
TY  - JOUR
AU  - Contreras, Gonzalo
TI  - Partially hyperbolic geodesic flows are Anosov
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 585
EP  - 590
VL  - 334
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02196-9/
DO  - 10.1016/S1631-073X(02)02196-9
LA  - en
ID  - CRMATH_2002__334_7_585_0
ER  - 
%0 Journal Article
%A Contreras, Gonzalo
%T Partially hyperbolic geodesic flows are Anosov
%J Comptes Rendus. Mathématique
%D 2002
%P 585-590
%V 334
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02196-9/
%R 10.1016/S1631-073X(02)02196-9
%G en
%F CRMATH_2002__334_7_585_0
Contreras, Gonzalo. Partially hyperbolic geodesic flows are Anosov. Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 585-590. doi : 10.1016/S1631-073X(02)02196-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02196-9/

[1] Contreras, G.; Iturriaga, R. Convex Hamiltonians without conjugate points, Ergodic Theory Dynamic Systems, Volume 19 (1999), pp. 901-952

[2] Eberlein, P. When is a geodesic flow of Anosov type? I., J. Differential Geom., Volume 8 (1973), pp. 437-463

[3] Franks, J.; Robinson, C. A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., Volume 223 (1976), pp. 267-278

[4] Hirsch, M.; Pugh, C.; Shub, M. Invariant Manifolds, Lecture Notes in Math., 583, Springer, 1977

[5] Mañé, R. Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 351-370

[6] Robinson, C. A quasi-Anosov flow that is not Anosov, Indiana Univ. Math. J., Volume 25 (1976), pp. 763-767

[7] Ruggiero, R.O. Persistently expansive geodesic flows, Comm. Math. Phys., Volume 140 (1991), pp. 203-215

[8] Sacker, R.J.; Sell, G.R. A note on Anosov diffeomorphisms, Bull. Amer. Math. Soc., Volume 80 (1974), pp. 278-280

[9] Sacker, R.J.; Sell, G.R. Existence of exponential dichotomies and invariant splitting I, II, III, J. Differential Equations, Volume 15 (1974), pp. 429-458 22 (1976) 478–496; 22 (1976) 497–522

[10] Selgrade, J. Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc., Volume 203 (1975), pp. 359-390

Cité par Sources :