A viscosity method in the min-max theory of minimal surfaces
Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 177-246.

We present the min-max construction of critical points of the area using penalization arguments. Precisely, for any immersion of a closed surface Σ into a given closed manifold, we add to the area Lagrangian a term equal to the Lq norm of the second fundamental form of the immersion times a “viscosity” parameter. This relaxation of the area functional satisfies the Palais–Smale condition for q>2. This permits to construct critical points of the relaxed Lagrangian using classical min-max arguments such as the mountain pass lemma. The goal of this work is to describe the passage to the limit when the “viscosity” parameter tends to zero. Under some natural entropy condition, we establish a varifold convergence of these critical points towards a parametrized integer stationary varifold realizing the min-max value. It is proved in Pigati and Rivière (arXiv:1708.02211, 2017) that parametrized integer stationary varifold are given by smooth maps exclusively. As a consequence we conclude that every surface area minmax is realized by a smooth possibly branched minimal immersion.

DOI : 10.1007/s10240-017-0094-z
Rivière, Tristan 1

1 Department of Mathematics, ETH Zentrum 8093 Zürich Switzerland
@article{PMIHES_2017__126__177_0,
     author = {Rivi\`ere, Tristan},
     title = {A viscosity method in the min-max theory of minimal surfaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {177--246},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {126},
     year = {2017},
     doi = {10.1007/s10240-017-0094-z},
     mrnumber = {3735867},
     zbl = {1387.53084},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-017-0094-z/}
}
TY  - JOUR
AU  - Rivière, Tristan
TI  - A viscosity method in the min-max theory of minimal surfaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 177
EP  - 246
VL  - 126
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-017-0094-z/
DO  - 10.1007/s10240-017-0094-z
LA  - en
ID  - PMIHES_2017__126__177_0
ER  - 
%0 Journal Article
%A Rivière, Tristan
%T A viscosity method in the min-max theory of minimal surfaces
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 177-246
%V 126
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-017-0094-z/
%R 10.1007/s10240-017-0094-z
%G en
%F PMIHES_2017__126__177_0
Rivière, Tristan. A viscosity method in the min-max theory of minimal surfaces. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 177-246. doi : 10.1007/s10240-017-0094-z. http://www.numdam.org/articles/10.1007/s10240-017-0094-z/

[1.] Allard, W. K. On the first variation of a varifold, Ann. Math. (2), Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl

[2.] Y. Bernard, Noether’s theorem and the Willmore functional, 2014, | arXiv

[3.] Bernard, Y.; Rivière, T. Energy quantization for Willmore surfaces and applications, Ann. Math. (2), Volume 180 (2014), pp. 87-136 | DOI | MR | Zbl

[4.] Y. Bernard and T. Rivière, Uniform regularity results for critical and subcritical surface energies, in preparation.

[5.] Colding, T. H.; De Lellis, C. The min-max construction of minimal surfaces, Surveys in Differential Geometry (2003), pp. 75-107

[6.] Colding, T. H.; Minicozzi, W. P. II Width and mean curvature flow, Geom. Topol., Volume 12 (2008), pp. 2517-2535 | DOI | MR | Zbl

[7.] Colding, T. H.; Minicozzi, W. P. II Width and finite extinction time of Ricci flow, Geom. Topol., Volume 12 (2008), pp. 2537-2586 | DOI | MR | Zbl

[8.] De Lellis, C.; Pellandini, F. Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., Volume 644 (2010), pp. 47-99 | MR | Zbl

[9.] Federer, H. Geometric Measure Theory (1969) | Zbl

[10.] P. Gaspar and M. A. M. Guaraco, The Allen–Cahn equation on closed manifolds, | arXiv

[11.] M. A. M. Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, | arXiv

[12.] Hirsch, M. W. Immersions of manifolds, Trans. Am. Math. Soc., Volume 93 (1959), pp. 242-276 | DOI | MR | Zbl

[13.] Hummel, C. Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves (1997) | DOI | Zbl

[14.] Hutchinson, J. E. Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., Volume 35 (1986), pp. 45-71 | DOI | MR | Zbl

[15.] Hutchinson, J. E.; Tonegawa, Y. Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory, Calc. Var. Partial Differ. Equ., Volume 10 (2000), pp. 49-84 | DOI | MR | Zbl

[16.] Imayoshi, Y.; Taniguchi, M. An Introduction to Teichmüller Spaces (1992) (Translated and revised from the Japanese by the authors) | DOI | Zbl

[17.] Iwaniec, T.; Martin, G. Geometric Function Theory and Non-linear Analysis (2001) | Zbl

[18.] Kuwert, E.; Lamm, T.; Li, Y. Two dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc., Volume 17 (2015), pp. 3081-3111 | DOI | MR | Zbl

[19.] Lang, S. Fundamentals of Differential Geometry (1999) | Zbl

[20.] Langer, J. A compactness theorem for surfaces with Lp-bounded second fundamental form, Math. Ann., Volume 270 (1985), pp. 223-234 | DOI | MR | Zbl

[21.] Liu, F. C. A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651 | DOI | MR | Zbl

[22.] Marques, F. C.; Neves, A. Min-max theory and the Willmore conjecture, Ann. Math. (2), Volume 179 (2014), pp. 683-782 | DOI | MR | Zbl

[23.] F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, 2013, | arXiv

[24.] Marques, F. C.; Neves, A. Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., Volume 4 (2016), pp. 463-511 | DOI | MR | Zbl

[25.] Michelat, A.; Rivière, T. A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., Volume 22 (2016), pp. 1282-1324 | DOI | Numdam | MR | Zbl

[26.] Mondino, A.; Rivière, T. Willmore spheres in compact Riemannian manifolds, Adv. Math., Volume 232 (2013), pp. 608-676 | DOI | MR | Zbl

[27.] Mondino, A.; Rivière, T. Immersed spheres of finite total curvature into manifolds, Adv. Calc. Var., Volume 7 (2014), pp. 493-538 | DOI | MR | Zbl

[28.] Morrey, C. B. Jr. The problem of Plateau on a Riemannian manifold, Ann. Math., Volume 49 (1948), pp. 807-851 | DOI | MR | Zbl

[29.] Palais, R. Critical point theory and the minmax principle, Proc. Sympos. Pure Math. (1970), pp. 185-212

[30.] A. Pigati and T. Rivière, The regularity of parametrized integer 2-rectifiable stationary varifolds, 2017, | arXiv

[31.] Pitts, J. T. Existence and Regularity of Minimal Surfaces on Riemannian Manifolds (1981) | DOI | Zbl

[32.] Rivière, T. Weak immersions of surfaces with L2-bounded second fundamental form, Geometric Analysis (2016), pp. 303-384 | DOI

[33.] Rivière, T. Analysis aspects of Willmore surfaces, Invent. Math., Volume 174 (2008), pp. 1-45 | DOI | MR | Zbl

[34.] Rivière, T. Lipschitz conformal immersions from degenerating Riemann surfaces with L2-bounded second fundamental forms, Adv. Calc. Var., Volume 6 (2013), pp. 1-31 | DOI | MR | Zbl

[35.] Rivière, T. The regularity of Conformal Target Harmonic Maps, Calc. Var. Partial Differ. Equ., Volume 56 (2017) | DOI | MR | Zbl

[36.] T. Rivière, Minmax methods in the calculus of variations of curves and surfaces, Course given at Columbia in May 2016, https://people.math.ethz.ch/~riviere/minmax.html.

[37.] T. Rivière, Minmax hierarchies and minimal surfaces in manifolds, | arXiv

[38.] Sacks, J.; Uhlenbeck, K. The existence of minimal immersions of 2-spheres, Ann. Math. (2), Volume 113 (1981), pp. 1-24 | DOI | MR | Zbl

[39.] Simon, L. Lectures on Geometric Measure Theory (1983) | Zbl

[40.] Smale, S. A classification of immersions of the two-sphere, Trans. Am. Math. Soc., Volume 90 (1958), pp. 281-290 | DOI | MR | Zbl

[41.] F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, supervisor L. Simon, University of Melbourne, 1982.

[42.] D. Stern, A natural min-max construction for Ginzburg–Landau functionals, | arXiv

[43.] D. Stern, Energy concentration for min-max solutions of the Ginzburg–Landau equations on manifolds with b1(M)0, | arXiv

[44.] Stone, A. H. Paracompactness and product spaces, Bull. Am. Math. Soc., Volume 54 (1948), pp. 977-982 | DOI | MR | Zbl

[45.] Struwe, M. The existence of surfaces of constant mean curvature with free boundaries, Acta Math., Volume 160 (1988), pp. 19-64 | DOI | MR | Zbl

[46.] Struwe, M. Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc., Volume 2 (2000), pp. 329-388 | DOI | MR | Zbl

[47.] Tonegawa, Y.; Wickramasekera, N. Stable phase interfaces in the van der Waals–Cahn–Hilliard theory, J. Reine Angew. Math. (Crelles J.), Volume 2012 (2012) | Zbl

[48.] X. Zhou, On the existence of min-max minimal torus, J. Geom. Anal., 20 (2010).

[49.] X. Zhou, On the existence of min-max minimal surface of genus g2, 2011, | arXiv

Cité par Sources :